함정 전투실험의 사후분석에서는 객체에 대한 자함의 표적 탐지능력와 무장 교전능력을 분석한다. 따라서 사후분석을 위해서는 전장 환경의 위협 객체와 센서에서 탐지한 표적간 연관 맺을 수 있는 정보가 필요하다. 기존의 공학급 교전 시뮬레이터는 이러한 객체-표적 연관정보를 제공하였다. 그러나 사용된 시뮬레이터의 잠수함모델에는 실제 소나시스템의 신호처리 알고리즘이 탑재되어있다. 소나신호처리 과정을 통해 얻은 표적정보에서는 실제 객체정보가 무엇인지 연관지을 수 없으며, 사용된 시뮬레이터도 그러한 정보를 제공하지 않고 있다. 따라서 본 연구에서는 객체정보와 소나신호처리에서 얻은 표적의 방위각, 거리, 속도 등의 기동정보를 이용하여 객체-표적 연관정보를 생성하였다. 객체-표적 연관정보를 생성하는 방법을 제안하고, 제안한 방법의 타당성을 실험을 통해 검증하였다.
최근 선진국들은 신규 워게임모형 개발시 장차전 개념을 반영하기 위하여 미래전자의 주요기능인 C4ISR 및 객체지향 기법을 적용하려고 노력하고 있다. 이러한 워게임 모형들은 현실과 같은 가상환경에서 합동작전을 모의할 수 있으며 전략, 작전 및 전술 수준을 모두 고려할 수 있고 지상전, 공중전, 해상전, 미사일전, 정보전 등 현대 전투개념을 모두 반영할 수 있도록 초대형 시뮬레이션 시스템으로 발전되고 있다. 본 고에서는 C4I 기능통합 및 연동화 모의 논리중에서 전략기동, 전술기동, 교전평가, 전략수송, 표적탐색, 미사일 판정을 위한 모의 기법과 초대형 시뮬레이션 시스템의 자료/명령 전달 구조 및 하드웨어/소프트웨어 사양, 구성 모듈등을 분석한다. 특히 현재 미 합참에서 개발중인 JWARS모형의 주요 객체들인 전투공간개체(BSE: Battle Space Entity), 아크-노드 네트워크, 화력 집중점(FCPs: Fire Concentration Points) 등을 살펴보고 현대전의 가장 큰 특징인 C4ISR/(Command, Control, Communication, Computer, Intelligence, Surveillance, Reconnaissance) 분야에서 표적탐지, 통신, 정보 모의 기법을 분석함으로써, 향후 한국적 여건에 적합한 분석모형 개발 방향을 제시하고자 한다.
본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.
The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.
최근 분산 컴퓨팅 환경은 급진적으로 광역화되고, 이질적이며, 연합형태의 광역 시스템 구조로 변화하고 있다. 이러한 환경은 네트워크상에 광범위한 서비스를 제공하는 통신 네트워크 기반에서 구현된 수많은 객체로 구성된다. 더욱, 지구상에 존재하는 모든 객체들은 이름이나 속성에 의해 중복된 특성을 갖는다. 이러한 같은 특성을 갖는 객체들은 중복 객체로 정의된다. 그러나 기존의 네이밍이나 트레이딩 메커니즘은 독립적인 위치 투명성이 결여로 중복된 객체들의 바인딩 서비스 지원이 불가능하다. 서로 다른 시스템 상에 존재하는 중복된 객체들이 동일한 서비스를 제공한다면, 각 시스템의 부하를 고려하여 클라이언트의 요청을 분산시킬 수 있다. 이러한 이유로 본 논문에서는 광역 컴퓨팅 환경에서 중복된 객체들의 위치 관리뿐만 아니라 시스템들간의 부하 균형화를 유지하기 위해서 최소부하를 갖는 시스템에 위치한 객체의 선정하여 동적 바인딩 서비스를 제공할 수 있는 새로운 모델을 설계하고 구현하였다. 이 모델은 네이밍 및 트래이딩 기능을 통합한 서비스에 의해 중복된 객체들에 대한 단일 객체 핸들을 얻는 부분과, 얻어진 객체핸들을 사용하여 위치 서비스에 의해 하나 이상의 컨택 주소를 얻는 부분으로 구성하였다. 주어진 모델로부터, 우리는 Naming/Trading 서비스와 위치 서비스에 의한 전체 바인딩 메커니즘의 처리과정을 나타내고, 통합 바인딩 서비스의 구성요소들에 대만 구조를 상세하게 기술하였다. 끝으로 우리의 모델을 구현하기 위해, 윈도우 운영체제와 Solaris 2.5/2.7에서 사용되는 CORBA 사양을 따르는 VisBroker 4.1과 자바 언어, SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되
자동 표적 인식(Automatic Target Recognition, ATR) 기술이 미래전투체계(Future Combat Systems, FCS)의 핵심 기술로 부상하고 있다. 그러나 정보통신(IT) 및 센싱 기술의 발전과 더불어 ATR에 관련이 있는 데이터는 휴민트(HUMINT·인적 정보) 및 시긴트(SIGINT·신호 정보)까지 확장되고 있음에도 불구하고, ATR 연구는 SAR 센서로부터 수집한 이미지, 즉 이민트(IMINT·영상 정보)에 대한 딥러닝 모델 연구가 주를 이룬다. 복잡하고 다변하는 전장 상황에서 이미지 데이터만으로는 높은 수준의 ATR의 정확성과 일반화 성능을 보장하기 어렵다. 본 논문에서는 이미지 및 텍스트 데이터를 동시에 활용할 수 있는 지식 그래프 기반의 ATR 방법을 제안한다. 지식 그래프와 딥러닝 모델 기반의 ATR 방법의 핵심은 ATR 이미지 및 텍스트를 각각의 데이터 특성에 맞게 그래프로 변환하고 이를 지식 그래프에 정렬하여 지식 그래프를 매개로 이질적인 ATR 데이터를 연결하는 것이다. ATR 이미지를 그래프로 변환하기 위해서, 사전 학습된 이미지 객체 인식 모델과 지식 그래프의 어휘를 활용하여 객체 태그를 노드로 구성된 객체-태그 그래프를 이미지로부터 생성한다. 반면, ATR 텍스트는 사전 학습된 언어 모델, TF-IDF, co-occurrence word 그래프 및 지식 그래프의 어휘를 활용하여 ATR에 중요한 핵심 어휘를 노드로 구성된 단어 그래프를 생성한다. 생성된 두 유형의 그래프는 엔터티 얼라이먼트 모델을 활용하여 지식 그래프와 연결됨으로 이미지 및 텍스트로부터의 ATR 수행을 완성한다. 제안된 방법의 우수성을 입증하기 위해 웹 문서로부터 227개의 문서와 dbpedia로부터 61,714개의 RDF 트리플을 수집하였고, 엔터티 얼라이먼트(혹은 정렬)의 accuracy, recall, 및 f1-score에 대한 비교실험을 수행하였다.
본 논문에서, 데이터베이스 생성 및 관리 시스템은 미소 픽셀 공중 표적 인식을 위해 제안된다. 제안된 시스템은 1)비행 테스트 비디오 프레임에 의한 직접 이미지 추출, 2) 자동 이미지 보관, 3) 이미지 데이터 레이블링 및 메타 데이터 주석, 4) 컬러 채널 변환, 5) HOG/LBP 기반 소화소 대상 증강 이미지 데이터 생성의 다섯가지 주요 기능으로 구성된다. 제안하는 프로그램은 파이썬 기반의 PyQt5와 OpenCV를 이용하여 구성하였고 공중 표적 인식을 위한 이미지 데이터셋은 제안한 시스템을 이용해 생성했으며 비행 실험으로 부터 수집된 영상을 입력영상으로 사용하였다.
자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.
이동 단말의 보급이 보편화됨에 따라 이동 객체의 위치 정보를 기반으로 사용자에게 사람이나 사물, 차량 등과 같은 이동 객체의 위치를 파악하여 그에 대한 정보를 제공해 주는 시스템이 필요로 하게 되었나 이러만 이동 객체관리 시스템에서는 계속적으로 위치 정보가 변화하는 이동 객체의 특성상 데이터의 빈번한 갱신이 일어나게 되고 DBMS에 명시적으로 저장되지 않은 위치 정보에 대해서도 보다 정확한 위치를 사용자에게 제공해 주어야 한다. 그러나 차량의 위치 추적과 같이 적용 개체가 차량에 한정된 경우 이동 경로가 도로상으로 제한되어 있으므로 이동 경로를 예측하기 힘든 사람과 같은 객체와는 특성이 나르나 따라서 차량 객체에 대해 보다 효과적인 서비스를 제공해 주기 위해서는 사람에 대한 위치 추적과는 다른 갱신 정책과 불확실한 위치의 추정 기법이 필요하다. 본 논문에서는 공간 데이터에 저장된 도로의 위상 정보와 차량의 속도 속성을 이용한 갱신 정책을 정하여 갱신 빈도수로 줄이고 도로 레이어의 위상 정보를 통해 불확실한 과거 및 미래의 위치로 추정하는 기법을 제안한다. 제안한 갱신 정책은 차량의 속도를 고려하여 현재의 위치에서 도로상의 교차점에 도착하는 시점의 위치를 예측하여 데이터의 갱신 시점으로 결정한다. 또한 불확실한 위치에 대한 추정은 이동하는 도회와 대응되는 위상 정보를 기반으로 차량의 이동 방향을 예측하 여 불확실한 미래의 위치를 결정할 수 있으며 명시적으로 저장되지 않은 과거 위치 정보의 검색에 대한 요청이 발생했을 경우 위상 정보를 이용하여 위치를 보정하고 사용자에게 보나 높은 정확성을 지닌 정보를 제공해 줄 수 있다.다. SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며
본 논문에서는 무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬을 제안한다. 제안된 알고리듬은 연속되는 영상에서 계산되는 호모그래피를 사용하여 움직이는 객체를 검출하고 확률적 다수-가설 추적기법으로 검출된 객체가 접근하는 비행체인지의 여부를 판단한다. 이는 항공기의 저고도 비행 시 영상에 보여지는 지표면과 같이 복잡한 배경 위에서 이동하는 비행체를 검출할 수 있고, 비행체의 동역학적 특성을 고려할 수 있기 때문에 색상기반의 비행체 탐지기법보다 향상된 성능을 보여준다. 또한 외부영향에 대한 임계치의 민감도를 현저히 감소시키므로 소형 무인항공기의 저고도 비행실험수행 시 효과적이다. 제안된 영상처리 알고리듬을 실제 비행실험 영상에 적용하여 성능을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.