• Title/Summary/Keyword: 객체 및 표적

Search Result 14, Processing Time 0.022 seconds

Association between Object and Sonar Target for Post Analysis of Submarine Engaged Warfare Simulation (잠수함 교전 시뮬레이션의 사후분석을 위한 객체와 소나 표적간의 연관 기법)

  • Kim, Junhyeong;Bae, Keunsung
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a method to generate the object-target identifier mapping information for system performance and effectiveness analysis of submarine engage system and verify the validity of the proposed method through experiments. In the submarine model of the engage simulator, the signal processing algorithm of the actual sonar system is installed. In the target information obtained through the sonar or signal processing process, the actual object information is not known, and the simulator does not provide such information. Therefore, in this study, we generated identifier mapping information for simulation post-analysis by using bearing, range, and speed of the target obtaind from sonar signal processing and the object collected.

워게임 모형의 C41 기능통합 및 연동화 시뮬레이션 기법

  • 문형곤;박찬우
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.153-153
    • /
    • 2000
  • 최근 선진국들은 신규 워게임모형 개발시 장차전 개념을 반영하기 위하여 미래전자의 주요기능인 C4ISR 및 객체지향 기법을 적용하려고 노력하고 있다. 이러한 워게임 모형들은 현실과 같은 가상환경에서 합동작전을 모의할 수 있으며 전략, 작전 및 전술 수준을 모두 고려할 수 있고 지상전, 공중전, 해상전, 미사일전, 정보전 등 현대 전투개념을 모두 반영할 수 있도록 초대형 시뮬레이션 시스템으로 발전되고 있다. 본 고에서는 C4I 기능통합 및 연동화 모의 논리중에서 전략기동, 전술기동, 교전평가, 전략수송, 표적탐색, 미사일 판정을 위한 모의 기법과 초대형 시뮬레이션 시스템의 자료/명령 전달 구조 및 하드웨어/소프트웨어 사양, 구성 모듈등을 분석한다. 특히 현재 미 합참에서 개발중인 JWARS모형의 주요 객체들인 전투공간개체(BSE: Battle Space Entity), 아크-노드 네트워크, 화력 집중점(FCPs: Fire Concentration Points) 등을 살펴보고 현대전의 가장 큰 특징인 C4ISR/(Command, Control, Communication, Computer, Intelligence, Surveillance, Reconnaissance) 분야에서 표적탐지, 통신, 정보 모의 기법을 분석함으로써, 향후 한국적 여건에 적합한 분석모형 개발 방향을 제시하고자 한다.

  • PDF

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

A Construction of Integrated Binding Service of The Selected Objects Considering Loads in Wide-Area Object Computing Environments (광역 객체 컴퓨팅 환경에서 부하를 고려한 선정된 객체의 통합 바인딩 서비스의 구축)

  • Kang, Myung-Suk;Jeong, Chang-Won;Joo, Su-Chong
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.1487-1490
    • /
    • 2002
  • 최근 분산 컴퓨팅 환경은 급진적으로 광역화되고, 이질적이며, 연합형태의 광역 시스템 구조로 변화하고 있다. 이러한 환경은 네트워크상에 광범위한 서비스를 제공하는 통신 네트워크 기반에서 구현된 수많은 객체로 구성된다. 더욱, 지구상에 존재하는 모든 객체들은 이름이나 속성에 의해 중복된 특성을 갖는다. 이러한 같은 특성을 갖는 객체들은 중복 객체로 정의된다. 그러나 기존의 네이밍이나 트레이딩 메커니즘은 독립적인 위치 투명성이 결여로 중복된 객체들의 바인딩 서비스 지원이 불가능하다. 서로 다른 시스템 상에 존재하는 중복된 객체들이 동일한 서비스를 제공한다면, 각 시스템의 부하를 고려하여 클라이언트의 요청을 분산시킬 수 있다. 이러한 이유로 본 논문에서는 광역 컴퓨팅 환경에서 중복된 객체들의 위치 관리뿐만 아니라 시스템들간의 부하 균형화를 유지하기 위해서 최소부하를 갖는 시스템에 위치한 객체의 선정하여 동적 바인딩 서비스를 제공할 수 있는 새로운 모델을 설계하고 구현하였다. 이 모델은 네이밍 및 트래이딩 기능을 통합한 서비스에 의해 중복된 객체들에 대한 단일 객체 핸들을 얻는 부분과, 얻어진 객체핸들을 사용하여 위치 서비스에 의해 하나 이상의 컨택 주소를 얻는 부분으로 구성하였다. 주어진 모델로부터, 우리는 Naming/Trading 서비스와 위치 서비스에 의한 전체 바인딩 메커니즘의 처리과정을 나타내고, 통합 바인딩 서비스의 구성요소들에 대만 구조를 상세하게 기술하였다. 끝으로 우리의 모델을 구현하기 위해, 윈도우 운영체제와 Solaris 2.5/2.7에서 사용되는 CORBA 사양을 따르는 VisBroker 4.1과 자바 언어, SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되

  • PDF

Automatic Target Recognition Study using Knowledge Graph and Deep Learning Models for Text and Image data (지식 그래프와 딥러닝 모델 기반 텍스트와 이미지 데이터를 활용한 자동 표적 인식 방법 연구)

  • Kim, Jongmo;Lee, Jeongbin;Jeon, Hocheol;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.145-154
    • /
    • 2022
  • Automatic Target Recognition (ATR) technology is emerging as a core technology of Future Combat Systems (FCS). Conventional ATR is performed based on IMINT (image information) collected from the SAR sensor, and various image-based deep learning models are used. However, with the development of IT and sensing technology, even though data/information related to ATR is expanding to HUMINT (human information) and SIGINT (signal information), ATR still contains image oriented IMINT data only is being used. In complex and diversified battlefield situations, it is difficult to guarantee high-level ATR accuracy and generalization performance with image data alone. Therefore, we propose a knowledge graph-based ATR method that can utilize image and text data simultaneously in this paper. The main idea of the knowledge graph and deep model-based ATR method is to convert the ATR image and text into graphs according to the characteristics of each data, align it to the knowledge graph, and connect the heterogeneous ATR data through the knowledge graph. In order to convert the ATR image into a graph, an object-tag graph consisting of object tags as nodes is generated from the image by using the pre-trained image object recognition model and the vocabulary of the knowledge graph. On the other hand, the ATR text uses the pre-trained language model, TF-IDF, co-occurrence word graph, and the vocabulary of knowledge graph to generate a word graph composed of nodes with key vocabulary for the ATR. The generated two types of graphs are connected to the knowledge graph using the entity alignment model for improvement of the ATR performance from images and texts. To prove the superiority of the proposed method, 227 documents from web documents and 61,714 RDF triples from dbpedia were collected, and comparison experiments were performed on precision, recall, and f1-score in a perspective of the entity alignment..

Database Generation and Management System for Small-pixelized Airborne Target Recognition (미소 픽셀을 갖는 비행 객체 인식을 위한 데이터베이스 구축 및 관리시스템 연구)

  • Lee, Hoseop;Shin, Heemin;Shim, David Hyunchul;Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.70-77
    • /
    • 2022
  • This paper proposes database generation and management system for small-pixelized airborne target recognition. The proposed system has five main features: 1) image extraction from in-flight test video frames, 2) automatic image archiving, 3) image data labeling and Meta data annotation, 4) virtual image data generation based on color channel convert conversion and seamless cloning and 5) HOG/LBP-based tiny-pixelized target augmented image data. The proposed framework is Python-based PyQt5 and has an interface that includes OpenCV. Using video files collected from flight tests, an image dataset for airborne target recognition on generates by using the proposed system and system input.

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

Update Policy and Estimation of Uncertain Position Using Trajectory Information (위상 정보를 이용한 갱신 정책과 불확실한 위치 정보에 대한 추정 기법)

  • Sim, Tai-Jung;Kim, Jae-Hong;Jung, Won-Il;Jang, Yong-Il;Bae, Hae-Young
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.1651-1654
    • /
    • 2003
  • 이동 단말의 보급이 보편화됨에 따라 이동 객체의 위치 정보를 기반으로 사용자에게 사람이나 사물, 차량 등과 같은 이동 객체의 위치를 파악하여 그에 대한 정보를 제공해 주는 시스템이 필요로 하게 되었나 이러만 이동 객체관리 시스템에서는 계속적으로 위치 정보가 변화하는 이동 객체의 특성상 데이터의 빈번한 갱신이 일어나게 되고 DBMS에 명시적으로 저장되지 않은 위치 정보에 대해서도 보다 정확한 위치를 사용자에게 제공해 주어야 한다. 그러나 차량의 위치 추적과 같이 적용 개체가 차량에 한정된 경우 이동 경로가 도로상으로 제한되어 있으므로 이동 경로를 예측하기 힘든 사람과 같은 객체와는 특성이 나르나 따라서 차량 객체에 대해 보다 효과적인 서비스를 제공해 주기 위해서는 사람에 대한 위치 추적과는 다른 갱신 정책과 불확실한 위치의 추정 기법이 필요하다. 본 논문에서는 공간 데이터에 저장된 도로의 위상 정보와 차량의 속도 속성을 이용한 갱신 정책을 정하여 갱신 빈도수로 줄이고 도로 레이어의 위상 정보를 통해 불확실한 과거 및 미래의 위치로 추정하는 기법을 제안한다. 제안한 갱신 정책은 차량의 속도를 고려하여 현재의 위치에서 도로상의 교차점에 도착하는 시점의 위치를 예측하여 데이터의 갱신 시점으로 결정한다. 또한 불확실한 위치에 대한 추정은 이동하는 도회와 대응되는 위상 정보를 기반으로 차량의 이동 방향을 예측하 여 불확실한 미래의 위치를 결정할 수 있으며 명시적으로 저장되지 않은 과거 위치 정보의 검색에 대한 요청이 발생했을 경우 위상 정보를 이용하여 위치를 보정하고 사용자에게 보나 높은 정확성을 지닌 정보를 제공해 줄 수 있다.다. SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며

  • PDF

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range (무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬)

  • Cho, Sung-Wook;Huh, Sung-Sik;Shim, Hyun-Chul;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1115-1123
    • /
    • 2011
  • This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.