• 제목/요약/키워드: 객체탐지모형

검색결과 6건 처리시간 0.02초

변화탐지와 회상 과제에 기초한 시각작업기억의 통합적 객체 표상 검증 (Integrated Object Representations in Visual Working Memory Examined by Change Detection and Recall Task Performance)

  • 이인애;현주석
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.1-21
    • /
    • 2024
  • 본 연구는 두 가지 이론적 모델인 통합된 객체 모형과 특장 병렬-독립 저장 모형을 검증함으로써 시각작업기억 표상의 특성을 조사하였다. 실험 I에서 참가자들은 색상 사각형, 방위 막대 또는 두 가지 모두로 구성된 배열을 기억한 뒤 이를 토대로 변화탐지과제를 수행했다. 단일 특징 조건에서 기억배열은 하나의 특징(방위 또는 색상)으로만 구성된 반면, 두 가지 특징 조건은 둘 모두를 포함했다. 두 조건간 변화탐지 수행의 차이는 없었으며 이는 병렬-독립 저장 모형보다는 통합된 객체 모형을 지지한다. 실험 II에서는 이등변삼각형의 방위, 색상 사각형 또는 두 특징 모두로 구성된 기억배열을 대상으로 회상과제가 실시되었으며, 단일 특징과 두 가지 특징 조건 간 회상 수행이 비교되었다. 두 조건 간 회상 정확도에는 차이가 없었으나 표상 선명도와 추측반응에 대한 분석 결과는 강한 객체 모형보다는 약한 객체 모형을 시사했다. 본 연구의 결과는 시각작업기억의 표상 특성을 둘러싼 현시점의 논쟁에 있어서 병렬-독립 저장 모형이 아닌 통합된 객체 모형의 우세를 지지한다.

워게임 모형의 C41 기능통합 및 연동화 시뮬레이션 기법

  • 문형곤;박찬우
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2000년도 춘계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2000
  • 최근 선진국들은 신규 워게임모형 개발시 장차전 개념을 반영하기 위하여 미래전자의 주요기능인 C4ISR 및 객체지향 기법을 적용하려고 노력하고 있다. 이러한 워게임 모형들은 현실과 같은 가상환경에서 합동작전을 모의할 수 있으며 전략, 작전 및 전술 수준을 모두 고려할 수 있고 지상전, 공중전, 해상전, 미사일전, 정보전 등 현대 전투개념을 모두 반영할 수 있도록 초대형 시뮬레이션 시스템으로 발전되고 있다. 본 고에서는 C4I 기능통합 및 연동화 모의 논리중에서 전략기동, 전술기동, 교전평가, 전략수송, 표적탐색, 미사일 판정을 위한 모의 기법과 초대형 시뮬레이션 시스템의 자료/명령 전달 구조 및 하드웨어/소프트웨어 사양, 구성 모듈등을 분석한다. 특히 현재 미 합참에서 개발중인 JWARS모형의 주요 객체들인 전투공간개체(BSE: Battle Space Entity), 아크-노드 네트워크, 화력 집중점(FCPs: Fire Concentration Points) 등을 살펴보고 현대전의 가장 큰 특징인 C4ISR/(Command, Control, Communication, Computer, Intelligence, Surveillance, Reconnaissance) 분야에서 표적탐지, 통신, 정보 모의 기법을 분석함으로써, 향후 한국적 여건에 적합한 분석모형 개발 방향을 제시하고자 한다.

  • PDF

KUeyes: 생물학적 시각 모형에 기반한 컬러 스테레오 헤드아이 시스템 (KUeyes: A biologically motivated color stereo headeye system)

  • 이상웅;최형철;강성훈;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.586-588
    • /
    • 2000
  • KUeyes는 3차원 실세계의 영상처리를 위해 고려대학교 인공시각연구센터에서 개발된 컬러 스테레오 헤드아이 시스템이다. KUeyes는 인간의 시각 시스템을 모델로 하여 다해상도 변환 영상, 칼라 정보와 거리 정보, 움직임 정보를 이용하여 지능적이고 빠르게 객체를 탐지하여 추적한다. 또한 병렬적으로 수행되는 인식기를 통해 탐지된 사람의 얼굴을 인식한다. 다양한 실험 및 분석을 통해 KUeyes가 복잡한 실영상을 대상으로 움직이는 개체를 신시간으로 안정되게 추적하고 인식하는 것을 확인할 수 있었다.

  • PDF

딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석 (Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model)

  • 김준오;백지원;김종락;박정수
    • 한국습지학회지
    • /
    • 제25권4호
    • /
    • pp.267-273
    • /
    • 2023
  • 조류는 생태계를 구성하는 중요한 요소이다. 그러나 남조류의 과도한 성장은 하천환경에 다양한 악영향을 발생시키고 규조류는 상수원과 정수장 공정관리에 영향을 미친다. 지속적이고 효율적인 조류 관리를 위해 조류 모니터링이 중요하다. 본 연구에서는 You Only Look Once (YOLO)의 최신 알고리즘 YOLO v8을 사용하여 조류경보제 기준에 사용하는 유해 남조류 4종과 정수처리공정에 영향이 큰 규조류 1종 총 5종의 이미지를 분류하는 이미지 분류모형을 구축하였다. 기본모형의 mAP는 64.4로 분석되었다. 모형의 학습에 사용된 원본 이미지에 회전, 확대, 축소를 수행하여 이미지의 다양성을 높인 5가지 모형을 구축하여 입력자료로 사용된 이미지의 구성에 따른 모형 성능의 변화를 비교하였다. 분석결과 회전, 확대, 축소를 모두 적용한 모형이 mAP 86.5로 가장 좋은 성능을 보이는 것을 확인하였다. 이미지의 회전만을 적용한 모형, 회전과 확대를 적용한 모형, 이미지의 회전과 축소만를 적용한 모형의 mAP는 각각 85.3, 82.3, 83.8로 분석되었다.

다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집 (Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms)

  • 임현아;오서정;손형준;오요셉
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.205-218
    • /
    • 2022
  • 최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.

객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구 (A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone)

  • 육심언;박휘랑;서태석;조영호
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.119-125
    • /
    • 2023
  • 우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.