• 제목/요약/키워드: 객체윤곽추출

검색결과 95건 처리시간 0.025초

객체의 윤곽선에 강인한 Saliency Map 생성 기법 (Saliency Map Creation Method Robust to the Contour of Objects)

  • 한성호;홍영표;이상훈
    • 디지털융복합연구
    • /
    • 제10권3호
    • /
    • pp.173-178
    • /
    • 2012
  • 본 논문에서는 영상의 관심 영역을 선택추출하여 효과적으로 객체를 추출 할 수 있는 관심 영역 지도(Saliency Map) 생성 기법을 제안하였다. 제안하는 방법은 객체의 윤곽선에 초점을 맞추어 단일영상의 에지(Edge), HSV 색상 모델의 H(Hue)성분, 포커스(Focus), 엔트로피(Entropy)의 네 가지 특징 정보를 이용한 각각의 특징 지도(Feature Map)를 생성하고, 생성된 특징 지도들을 중심 주변 차이(Center Surround Differences)를 이용하여 중요도 지도(conspicuity map)를 생성하게 된다. 이후 생성된 중요도 지도들을 조합함으로써 관심 영역 지도를 생성하게 된다. 제안한 기법을 이용하여 생성한 관심 영역 지도를 기존 기법의 관심 영역 지도와 비교한 결과 제안한 기법의 우수함을 알 수 있었다.

깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출 (ROI Based Object Extraction Using Features of Depth and Color Images)

  • 류가애;장호욱;김유성;류관희
    • 한국콘텐츠학회논문지
    • /
    • 제16권8호
    • /
    • pp.395-403
    • /
    • 2016
  • 최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.

AR 객체인식 기술을 위한 지역가변이진화와 색상 군집화 기반의 객체 추출 방법 (Local variable binarization and color clustering based object extraction for AR object recognition)

  • 조재현;안현우;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.481-483
    • /
    • 2018
  • AR은 VR과 달리 실세계 공간의 객체에 대한 서비스를 제공하므로 서비스 개발을 방해하는 많은 요인들이 발생한다. 이를 보완하기위해 비주얼 마커, SLAM, 객체인식 등 여러 AR 기술이 존재한다. 본 논문은 AR 기술 중에서 객체인식의 정확도 향상을 위해 지역가변 이진화(Local variable binarization)와 색상의 군집화를 사용해서 이미지에서 객체를 추출하는 방법을 제안한다. 지역 가변화는 픽셀을 순차적으로 읽어 들이면서 픽셀 주위의 값의 평균을 구하고, 이 값을 해당 픽셀의 임계 값으로 사용하는 알고리즘이다. 픽셀마다 주위 색상 값에 의해 임계 값이 변화되므로 윤곽선 표현이 기존의 이진화보다 뚜렷이 나타난다. 색상의 군집화는 객체의 중요색상과 배경의 중요색상을 중심으로 유사한 색상끼리 군집화 하는 것이다. 객체 내에서 가장 많이 나온 값과 객체 외에 가장 많이 나온 값을 각 각 기준으로 색조와 채도의 값을 Euclidean 거리를 사용해 객체의 색상과 배경 색상을 분리했다.

MPEG-2 비트열로부터 객체 기반 MPEG-4 응용을 위한 고속 정보 추출 알고리즘 (Fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-streamaper)

  • 양종호;원치선
    • 한국통신학회논문지
    • /
    • 제26권12A호
    • /
    • pp.2109-2119
    • /
    • 2001
  • 본 논문에서는 MPEG-2 비트열로부터 객체 기반 MPEG-4로의 고속 변환을 위한 정보 추출 알고리즘을 소개한다. 객체 기반 MPEG-4로의 변환을 위한 정보로써 객체 영상과 형상 정보, 매크로블록 움직임 벡터, 헤더정보가 MPEG-2로부터 추출된다. 추출된 정보를 이용하면 객체 기반 MPEG-4로의 고속 변환이 가능하다. 가장 중요한 정보인 객체 영상 추출은 MPEG-2의 움직임 벡터와 워터쉐드 알고리즘을 이용하여 이루어진다. 사용자의 인지정보를 이용하여 프레임 내에서 객체를 추출하고, 추출된 객체로 연속된 프레임에서 객체를 추적하게 된다. 수행 중 객체의 빠른 움직임으로 만족스럽지 못한 결과를 내더라도, 사용자가 개입하여 다시 좋은 결과를 얻을 수 있도록 하였다. 객체 추적 과정은 크게 두 단계로 객체 추출 단계와 객체 추적 단계로 나누어져 있다. 객체 추출 단계는 블록분류와 워터쉐드 알고리즘으로 자동 분할된 영상에서 사용자가 직접 객체를 추출하는 단계이다. 사용자가 개입하는 단계이기 때문에, 번거로울 수 있으나 손쉽게 추출할 수 있도록 구현하였다. 객체 추적 단계는 연속된 프레임 에서 객체를 추적하는 단계로 MPEG-2 움직임 벡터와 객체 모양 정보를 이용하여 고속으로 구해지고 워터쉐드 알고리즘으로 윤곽선 보정작업을 하였다. 실험 결과 MPEG-2 비트스트림으로부터 객체 기반 MPEG-4로의 고속변환이 가능함을 알 수 있었다.

  • PDF

MPEG-1,2로부터 객체 기반 MPEG-4 변환을 위한 고속 정보 추출 알고리즘 (Fast information extraction algorithm for object-based MPEG-4 conversion from MPEG-1,2)

  • 양종호;박성욱
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.91-102
    • /
    • 2004
  • 본 논문에서는 MPEG-1,2로부터 객체 기반 MPEG-4로의 고속 변환을 위한 정보 추출 알고리즘을 소개한다. 객체 기반 MPEG-4로의 변환을 위한 정보로써 객체 영상과 형상 정보, 매크로블록 움직임 벡터, 헤더정보가 MPEG-4로부터 추출된다. 추출된 정보를 이용하면 객체 기반 MPEG-4로의 고속 변환이 가능하다. 가장 중요한 정보인 객체 영상 추출은 MPEG-2의 움직임 벡터와 워터쉐드 알고리즘을 이용하여 이루어진다. 사용자의 인지정보를 이용하여 프레임 내에서 객체를 추출하고, 추출된 객체로 연속된 프레임에서 객체를 추적하게 된다. 수행 중 객체의 빠른 움직임으로 만족스럽지 못한 결과를 내더라도, 사용자가 개입하여 다시 좋은 결과를 얻을 수 있도록 하였다. 객체 추적 과정은 크게 두 단계로 객체 추출 단계와 객체 추적 단계로 나누어져 있다. 객체 추출 단계는 블록분류와 워터쉐드 알고리즘으로 자동 분할된 영상에서 사용자가 직접 객체를 추출하는 단계이다. 사용자가 개입하는 단계이기 때문에, 번거로울 수 있으나 손쉽게 추출할 수 있도록 구현하였다 객체 추적 단계는 연속된 프레임에서 객체를 추적하는 단계로, MPEG-1,2 움직임 벡터와 객체 모양 정보를 이용하여 고속으로 구해지고 워터쉐드 알고리즘으로 윤곽선 보정작업을 하였다 실험 결과 MPEG-1,2 비트스트림으로부터 객체 기반 MPEC-4로의 고속 변환이 가능함을 알 수 있었다.

직선과 bezier 곡선을 이용한 내용기반 화상 검색시스템의 구현 (The implementation of the content-based image retrieval system using lines and bezier curves)

  • 정원일;최기호
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1861-1873
    • /
    • 1996
  • 본 논문에서는 화상내 객체의 윤곽 점열을 직선과 Bezier 곡선으로 분리하고 이들의 구성비를 인덱스 키로 저장하여 질의화상을 검색할 수 있는 내용기반 화상정보 검색시스템을 구현하였다. 이를 위해 칼라 화상으로부터 윤곽 점열을 추출하고 화상내 객체의 내부영역을 제거하였으며 다각형 근사후 직선을 생성하고 나머지 화소에 대해서 화소열이 갖는 궤적에 충실한 Bezier 곡선을 생성하는 알고리즘을 제안하였다. 그리고 화상의 직선과 곡선의 전체 또는 블럭단위 구성비를 이용하여 유사도에 의한 검색 알고리즘도 제안하였다.

  • PDF

배경화면 변화를 이용한 객체의 윤곽점 검출 (Object Boundary Point Detection Using Background Image Change)

  • 백주호;이창수;오해석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.563-566
    • /
    • 2003
  • 인터넷 시대에 접어들면서 웹 카메라를 이용한 보안 시스템의 개발이 활발하다 원격지에 설치된 카메라가 보내준 영상을 통하여 현재의 상황을 파악할 수 있으며 적절한 조치를 웹을 통해 취할 수 있다. 본 논문에서는 카메라로부터 입력되어지는 입력영상과 배경영상의 차를 이용하여 움직임 검출하는 방법을 제안한다. 또한 배경영상은 시간에 따라 변화하기 때문에 변화된 시점부터 배경이미지 픽셀을 교체 해준다. 카메라에서 받아오는 영상을 배경영상과 입력영상으로 구분 한 다음 두 영상의 차를 구하여 영상의 변화점을 찾는다. 픽셀 검사는 모든 픽셀을 연산에 참여하는 방식을 탈피하여 일정한 간격을 두고 이미지의 픽셀을 검색하여 효율적인 객체의 윤곽점을 추출한다.

  • PDF

객체추적을 위한 웨이블릿 기반 계층적 능동형태 모델 (Wavelet transform-based hierarchical active shape model for object tracking)

  • 기현종;신정호;이성원;백준기
    • 한국통신학회논문지
    • /
    • 제29권11C호
    • /
    • pp.1551-1563
    • /
    • 2004
  • 여기는 본 논문에서는 움직이는 물체 추적을 위한 윤곽선 및 형태 파라미터 추출을 위해 웨이블릿 변환을 이용한 능동형태모델의 계층적인 접근방법에 대해 제안한다. 능동형태 모델의 여러 단계 중 지역구조 모델링은 비정형 객체의 형태를 추출하기 위해 가장 중요한 비중을 차지한다. 제안한 알고리듬은 웨이블릿을 이용하여 계층적인 접근은 물론 지역구조 모델링단계를 웨이블릿 대역 분할을 이용하여 복잡한 환경에서의 객체를 강건하게 추적할 수 있도록 하였다. 또한 비정형객체를 실시간 비디오 추적에 이용하기 위해 웨이블릿을 이용한 계층적 움직임 추정방법을 적용하여 객체의 움직임을 예측, 보정하는 효과적인 방법을 제시하였다. 제안하는 알고리듬은 객체 추적에 대한 성능을 평가하기 위해 다양한 실험영상을 통해 우수함을 확인하였다.

레벨셋을 이용한 특정 영역의 영상 세그먼테이션 (Image Segmentation of Special Area Using the Level Set)

  • 주기세;조덕상
    • 한국정보통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.967-975
    • /
    • 2010
  • 영상 세그먼테이션은 배경으로부터 객체들을 구별하는 것으로서, 영상 분석과 해석을 하는데 있어서 첫 번째 단계에 해당한다. 그러나 활성 외곽선 모델은 위상이 2개밖에 없으므로 정확하게 원하는 객체들을 추출할 수가 없다. 본 논문에서 원하는 특정한 범위의 명암도를 갖는 객체들을 추출하기 위해서 초기 곡선을 객체들 근처에 구성함으로써 바라는 윤곽을 찾는 방법을 제안한다. 초기 곡선은 히스토그램 평활화, 가우시안 평활화, 임계치를 이용하여 구한다. 제안한 방법은 초기 곡선을 관심영역에 최대 근접시키므로 계산 속도를 줄이고 원하는 영역을 정확하게 추출할 수 있다. CT 영상과 MR 영상에 적용한 결과 제안한 방법이 활성 외곽선 모델보다 더 효과적임을 보였다.

윤곽선 특징점 기반 형태 유사도를 이용한 손동작 인식 (Hand Gesture Recognition Using Shape Similarity Based On Feature Points Of Contour)

  • 이홍렬;최창;김판구
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.585-588
    • /
    • 2008
  • 본 논문은 손동작 인식을 위한 형태 유사도 측정 방법을 제안한다. 이를 위해 손 영역 획득과 유사도 측정 단계로 나눈다. 손 영역 획득은 YCbCr 칼라 공간을 이용하여 손 영역을 추출하며, filter와 Histogram분석을 통하여 노이즈를 제거한다. 그리고 손 형태 유사도 측정은 윤곽선을 추출한 후 인접 간선들 사이의 거리와 각도 관계로 TSR을 적용하여 손동작의 유사성을 측정하였다. 파악된 특징점으로부터 형태 유사도 값을 측정한 후, 이를 손동작을 인식하는데 활용한다.

  • PDF