• Title/Summary/Keyword: 객체기반분할

Search Result 425, Processing Time 0.022 seconds

Comparison of Segmentation Weight Parameters for Object-oriented Classification (객체기반 영상분류를 위한 영상분할 가중치 비교)

  • Lee, Jung-Bin;Heo, Joon;Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.289-292
    • /
    • 2007
  • 객체기반 영상분류를 위한 영상분할에 있어서 중요한 요소로는 분할축척(Scale), 분광 정보(Color), 공간 정보(Shape) 등이 있으며 공간 정보에 해당하는 공간 변수는 평활도(Smoothness)와 조밀도(Compactness)가 있다. 이들 가중치의 선택이 최종적으로 객체기반 영상분류의 결과를 좌우하게 된다. 본 연구는 객체기반 영상분류의 준비 과정이라 할 수 있는 영상분할에 있어서 다양한 가중치를 적용을 통하여 영상을 분할하였다. 영상분할을 위해 적용한 가중치는 10, 20, 30의 분할축척(Scale)과 분광 정보(Color)와 공간 정보(Shape)간의 가중치 조합, 공간 변수인 평활도(Smoothness)와 조밀도(Compactness)간의 가중치 조합을 사용하였다. 각 가중치 조합을 통하여 분할된 영상의 분석은 Moran's I 와 객체 내부 분산(Intrasegment Variance)을 이용하여 분석하였다. 각 객체간의 상관관계 분석을 위하여 Moran's I를 계산하였으며 분류된 지역의 동질성을 분석하기 위하여 객체 면적을 고려한 객체 내부 분산(Intrasegment Variance)값을 계산하였다. Moran's I 가 낮은 값을 가질수록 객체 간의 공간상관관계가 낮아지므로 이웃 객체간의 이질성은 높아지며 객체 내부 분산(Intrasegment Variance)이 낮은 값을 가질수록 지역간의 동질성은 높아지게 된다. Moran's I 와 객체 내부 분산(Intrasegment Variance)의 조합을 통하여 객체기반 영상분류 시 가장 높은 분류 정확도가 예상되는 밴드별 영상분할 가중치를 얻을 수 있다.

  • PDF

딥러닝 기반 동영상 객체 분할 기술 동향

  • Go, Yeong-Jun
    • Broadcasting and Media Magazine
    • /
    • v.25 no.2
    • /
    • pp.44-51
    • /
    • 2020
  • 동영상 프레임 내 객체 영역들을 배경으로부터 분할하는 기술인 동영상 객체 분할(video object segmentation)은 다양한 컴퓨터 비전 분야에 활용 가능한 연구 분야이다. 최근, 동영상 객체 분할과 관련된 연구 내용으로 CVPR, ICCV, ECCV의 컴퓨터 비전 최우수 학회에 매년 20편 가까이 발표될 정도로 많은 관심을 받고 있다. 동영상 객체 분할은 사용자가 제공하는 정보에 따라 비지도(unsupervised) 동영상 객체 분할, 준지도(semi-supervised) 동영상 객체 분할, 인터렉티브(interactive) 동영상 객체 분할의 세 카테고리로 분류할 수 있다. 본 고에서는 최근 연구가 활발하게 수행되고 있는 비지도 동영상 객체 분할과 준지도 동영상 객체 분할 연구의 최신 동향에 대해 소개하고자 한다.

Target Detection Method using Lightweight Mean Shift Segmentation and Shape Features (경량화된 Mean-Shift 영상 분할 및 형태 특징을 이용한 객체 탐지 방법)

  • Kim, Jeong-Seok;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.41-44
    • /
    • 2022
  • Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.

  • PDF

Region Segmentation Technique Based on Active Contour for Object Segmentation (객체 분할을 위한 Active Contour 기반의 영역 분할 기법 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.3
    • /
    • pp.167-172
    • /
    • 2012
  • This paper presents the technique separating objects on the single frame image from the background using region segmentation technique based on active contour. Active contour is to extract contours of objects from the image, which is set to have multi-search starting point to extract each objects contours for multi-object segmentation. Initial rough object segments are generated from binary-coded image using object specific contour information, and then the hole filling is performed to compensate internal segmentation caused by the change of inner object hole area and pixels. This procedure complements the problems caused by the noise from the region segmentation and the errors of segmentation near by the contour. The proposed method and conventional method is compared to verify the superiority of the proposed method.

Uncertain Region Based User-Assisted Segmentation Technique for Object-Based Video Editing System (객체기반 비디오 편집 시스템을 위한 불확실 영역기반 사용자 지원 비디오 객체 분할 기법)

  • Yu Hong-Yeon;Hong Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • In this paper, we propose a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the selected objects are continuously separated from the un selected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable and efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on this result, we have developed objects based video editing system with several convenient editing functions.

  • PDF

A Study On Object-based Image Segmentation (객체 기반 이미지 분할에 관한 연구)

  • 임희석;박기홍
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.210-214
    • /
    • 2002
  • 본 논문에서는 효율적인 이미지 분할을 위한 객체지향 모델링 방법을 제시한다. 이를 위하여 분할 객체와 자료구조를 제시하며 각각의 객체들을 위한 클래스 계층 구조를 나타낸다. 또한 객체의 부분에 대한 계층구조는 물론 객체의 기하학적인 표현을 위한 표현 클래스도 제시한다. 결론적으로 이미지 객체에 대한 시스템 독립적 이미지 분할을 위한 클래스 계층 구조를 객체지향 방법으로 제시하였다.

  • PDF

Region Segmentation based on Generating Boundary between Object using Focus of image (이미지 초점을 이용한 객체 간 경계 생성 기반의 영역 분할 기법)

  • Han, Hyeon-Ho;Hong, Yeong-Pyo;Lee, Gang-Seong;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.531-534
    • /
    • 2012
  • 본 논문에서는 Active Contour 기반의 영역 분할에서 이미지의 초점값을 이용하여 분할된 영역 사이의 경계를 생성하여 기존의 Active Contour에서 발생할 수 있는 중첩 객체의 동일 객체 인식을 방지하는 기법을 제안한다. Active Contour는 영상에서 객체의 윤곽을 검출하여 윤곽을 기준으로 영상을 분할하지만 중첩되거나 근접한 객체에서의 분할이 정확하게 이루어지지 않아 동일 객체로 인식하는 단점이 있다. 이러한 객체에서의 분할을 위해 영상의 초점값을 이용하여 영상 내에 존재하는 객체의 유사 경계 영역을 생성하고 Active Contour의 결과에 적용하여 경계를 생성한 뒤 초점값 적용으로 인해 생성될 수 있는 홀 영역을 hole filling 과정을 수행하여 보완함으로써 보다 정확한 객체를 추출하였다.

  • PDF

A Study on Image Segmentation for Non-uniform Image (불균등 조명 영상 분할에 관한 연구)

  • 김진숙;강진숙;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.215-218
    • /
    • 2002
  • 영상 내에 존재하는 객체를 배경에서 분리해내는 영상분할에 대한 연구는 일반적으로 픽셀중심, 에지기반, 영역기반 그리고 모델기반의 영역에서 이루어져왔다. Active Contour 모델은 객체를 영상에서 분리하는 에지기반의 영상분할 방식이다. 전통적인 의미의 Active Contour 모델에서 사용한 그라디언트 함수 기반의 영상추출은 잡영이 많고 객체와 배경간 뚜렷한 경계가 없는 객체를 검출하는데는 그 한계를 보이고 있다. 이런 한계를 극복하고자 제안된 방법이 Mumford-Shah equation과 Lipshitz 함수를 이용한 Chan과 Vese의 Active Contour Model이다. 그런데 이 모델은 잡영이 많고 경계선이 뚜렷하지 않은 영상을 분할하는데는 효과적이나, 불균형적 조명이 있는 영상에서 객체를 분리해 내는데는 한계를 보이고 있다. 본 논문은 이러한 단점을 극복하기 위해 불균형적인 영상을 균일화하는 방법을 Chan과 Vese의 Active Contour 방식을 적용하기 전에 적용 시켜 영상 내 객체를 보다 효과적으로 추출하는 방법을 제안한다.

  • PDF

Generation of Active Stromotion Images using Kernel-based Tracking and Grab-Cut Algorithm (커널 기반 객체 추적 및 Grab-Cut 알고리즘을 이용한 액티브 스트로모션 영상 생성)

  • Oh, Kyeong-Seok;Choi, Yoo-Joo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.131-133
    • /
    • 2016
  • 본 논문은 연속적인 비디오 시퀀스에서 움직이는 객체의 영역을 효율적으로 분할하기 위하여 커널 기반 객체 추적과 Grab-Cut 알고리즘을 결합한 비디오 영역 분할 방법을 제안한다. 제안 방법에서는 추적 목표 객체의 초기 위치를 사각영역으로 선택하면, 사각의 외부 영역을 배경색상으로 인지하고, 배경 색상을 고려한 목표 객체의 주요 색상을 분석한다. 이를 기반으로 커널기반 객체 추적 기법을 적용하여 빠르게 객체의 영역을 추출한다. 추적한 각 객체의 영역에서 중앙 객체 영역과 배경 영역의 색 정보를 초기값으로 하여 Grab-Cut 알고리즘을 수행하고 사각형 형태가 아닌 객체의 실루엣 최적화된 영역으로 분할한다. 제안 방법을 스포츠 방송, 광고, 영화 등의 특수 효과로 활용되고 있는 stromotion 영상 생성에 적용하기 위하여 프레임별 추출된 객체의 영상을 새로운 프레임 영상에 합성하는 작업을 수행하여, 초당 10 프레임의 처리 속도에서 원하는 스트로모션 효과 영상을 생성하였다.

  • PDF

Computing Similarities between Segmented Objects in the image for Content-Based Retrieval (내용기반 검색을 위한 분할된 영상객체간 유사도 판별)

  • 유헌우;장동식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.

  • PDF