Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.294-298
/
2008
이메본 논문은 GP 트리의 노드포화도를 제어함으로써 트리의 구조공간에서 효율적인 개체 분포를 유도하는 GP 진화연산자를 제안한다. 특정 영역으로의 트리 개체의 분포가 성능에 미치는 영향을 검증하고 진화과정에서 나타나는 군집내의 개체 다양성과의 관계를 분석한다. 제안된 진화연산자를 회귀다항식, 멀티플렉서, 짝수 패리티의 3가지 벤치마크 문제에 대해서 실험을 하였고, 표준 GP 연산자와 비교하였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.347-350
/
2020
농식품 가격을 안정적으로 제공하기 위해 농식품 가격 변동에 대한 요인 분석이 필요하다. 본 연구는 농식품 가격 변동의 요인 분석을 위해 인과관계 템플릿을 정의하고, 요약을 위한 개체명 인식 방법을 적용한다. 농식품 일일동향 데이터에 대한 평가에서 딥러닝 기반 BiLSTM-CRF 실험 결과 F1-점수 0.93으로 베이스라인 Bi-LSTM 실험 결과 0.75에 비해 높은 성능을 보였다.
본 논문에서는 환경과 시스템의 상호작용을 통한 경험에 의해 습득된 정보를 개체간 네트워크를 통하여 갱신하는 과정을 구성하는 연구를 하였다. 기존의 연구에서는 강화학습 알고리즘을 이용하여 임의의 구역에 대한 지도 정보를 습득하고 이를 바탕으로 개체들 각각의 최적의 행동 정책을 구성하는 바 이 때 각각의 체개체가 가지고 있는 최단경로에 대한 정보의 우위를 결정하는 과정을 추가하였다. 이를 바탕으로 최종적으로 선택된 경로에 대한 정보를 업데이트하여 구성 된 네트워크를 통한 개체간 데이터를 동시에 공유하는 과정을 거쳐서 각각의 시스템이 스스로 정보를 갱신하는 방법을 제안하였다 또한 이 제안한 개념의 적합성을 입증하기 위하여 개체간의 정보를 통합하고 비교하는 실험을 수행하여 성공적인 결과를 얻었다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.337-339
/
2016
본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.3-5
/
2000
현존하는 다양한 군집화 알고리즘들이 개체들을 군집화하기 위하여 사용하는 기준들은 일반적으로 인위적으로 설정된 것들이다. 이러한 기준들은 개체들 자체로부터 나오는 자연스러운 기준이라기 보다는 군집을 위하여 임의로 선정된 것이므로 군집화의 기본 목적인 개체들을 자연스러운 그룹들로 분할하고자 하는데 있어 한계를 갖게 된다. 본 논문에서는 이러한 점에 주목하여 현존하는 자연계의 군집 법칙으로 대표되는 만유인력의 법칙을 사용한 개체 군집화 알고리즘을 제안함으로써 기본적인 목적에 충실한 군집화를 실현하고자 한다. 이 방법은 기존의 방법론들에서 찾아볼 수 없었던 자연 법칙에 근거한 새로운 군집화 시도일 뿐만 아니라, 초기조건에 관계없이 안정적인 성능을 보이고 또한 군집의 수가 자연 법칙에 따라 자동으로 결정되는 특성을 지니고 있어 다양한 실질적인 응용 분야에서 효과적으로 사용될 수 있는 새로운 군집화 도구가 될 수 있을 것으로 보인다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.78-80
/
2012
개체 관계(ER) 모델과 확장 개체 관계(EER) 모델은 개념적 데이터베이스 설계분야에서 가장 많이 사용되는 모델이다. 확장 개체 관계 모델은 여전히 객체지향 데이터베이스를 처리하는데 강력하나 최신 객체관계 데이터베이스와 UML과 같은 새로운 데이터베이스 모델링을 처리하기에는 부족함이 많다. 따라서 본 논문에서는 이러한 객체 관계 데이터베이스를 지원하기 위한 확장 개체 관계 기반의 변환 방법을 제안한다. 변환 규칙은 트리플 그래프 문법을 사용하여 정의하고 MOFRON TGG 에디터를 이용하여 표현한다. 트리플 그래프 문법 규칙에 따라 본 제안 방법은 자동 ORDB 개발 프레임워크에 적용할 수 있다.
Kim, Jae-Kyun;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Nam-Goong, Young;Choi, Min-Seok;Kim, Jae-Hoon
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.357-361
/
2019
기계학습을 이용하여 개체명 인식을 수행하기 위해서는 많은 양의 개체명 말뭉치가 필요하다. 이를 위해 본 논문에서는 문장 자동 생성을 통해 개체명 표지가 부착된 말뭉치를 구축하는 방법을 제안한다. 기존의 한국어 문장 생성 연구들은 언어모델을 이용하여 문장을 생성하였다. 본 논문에서는 은닉 마르코프 모델을 이용하여 주어진 표지열에 기반 하여 문장을 생성하는 시스템을 제안한다. 제안하는 시스템을 활용하여 자동으로 개체명 표지가 부착된 3,286개의 새로운 문장을 생성할 수 있었다. 학습말뭉치 문장과 약 70%의 차이를 보이는 새로운 문장을 생성하였다.
Kim, Seonghyun;Song, Youngsook;Song, Chisung;Han, Jiyoon
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.203-208
/
2021
본 논문에서는 맥락에 따라 개체명의 범주가 달라지는 어휘를 중심으로 교차 태깅된 개체명의 성능을 레이블과 스팬 정답률, 문장 성분과 문장 위치에 따른 정답률로 나누어 살펴 보았다. 레이블의 정확도는 KoGPT2, mBERT, KLUE-RoBERTa 순으로 정답률이 높아지는 양상을 보였다. 스팬 정답률에서는 mBERT가 KLUE-RoBERTa보다 근소하게 성능이 높았고 KoGPT2는 매우 낮은 정확도를 보였다. 다만, KoGPT2는 개체명이 문장의 끝에 위치할 때는 다른 모델과 비슷한 정도로 성능이 개선되는 결과를 보였다. 문장 종결 위치에서 인식기의 성능이 좋은 것은 실험에 사용된 말뭉치의 문장 성분이 서술어일 때 명사의 중첩이 적고 구문이 패턴화되어 있다는 특징과 KoGPT2가 decoder기반의 모델이기 때문으로 여겨지나 이에 대해서는 후속 연구가 필요하다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.465-469
/
2018
본 논문에서는 지식베이스 완성을 위한 새로운 모델, KBCNN을 소개한다. KBCNN 모델은 CNN을 기반으로 지식베이스의 개체들과 관계들 사이의 연관성을 포착한다. KBCNN에서 각 트리플 <주어 개체, 관계, 목적어 개체>는 3개의 열을 가진 행렬로 표현되며, 각각의 열은 트리플의 각 원소를 표현하는 임베딩 벡터다. 트리플을 나타내는 행렬은 여러 개의 필터를 가지고 있는 컨볼루션 레이어를 통과한 뒤, 하나의 특성 벡터로 합쳐진다. 이 특성 벡터를 가중치 행렬과 내적 하여 최종적으로 해당 트리플의 신뢰도를 출력하게 된다. 이 신뢰도를 바탕으로 트리플의 진실 여부를 가려낼 수 있다. 지식베이스 완성 연구에서 가장 많이 사용되는 데이터셋인 FB15k-237을 기반으로 한 실험을 통해 KBCNN 모델이 기존 임베딩 모델들보다 뛰어난 성능을 보이는 것을 확인하였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.5
/
pp.11-17
/
2011
In this paper, we propose ER_Modeler, which is a logical database design tool based on entity-relationship model. ER_Modeler provides the entity-relationship diagrams to be built graphically on windows and generates the graphs into the appropriate data definition language for creating relational database tables. Furthermore, ER_Modeler provides the import/export functions using XML to guarantee the interoperability with ERwin which is one of the most popular commercial products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.