• Title/Summary/Keyword: 개체 기반

Search Result 923, Processing Time 0.023 seconds

Neural Network Model for Named Entitiy Linking using Wikipedia Link Data (위키피디아 링크 데이터를 이용한 Neural Network Model 기반 한국어 개체명 연결)

  • Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.163-166
    • /
    • 2018
  • 개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.

  • PDF

Named Entity Recognition based on ELECTRA with Dictionary Features and Dynamic Masking (사전 기반 자질과 동적 마스킹을 이용한 ELECTRA 기반 개체명 인식)

  • Kim, Jungwook;Whang, Taesun;Kim, Bongsu;Lee, Saebyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.509-513
    • /
    • 2021
  • 개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.

  • PDF

Korean Named Entity Recognition Based on Supervised Learning Using Named Entily Construction Principles (개체명 구성 원리를 이용한 교사학습 기반의 한국어 개체명 인식)

  • Hwang, Yi-Gyu;Lee, Hyun-Sook;Chung, Eui-Sok;Yun, Bo-Hyun;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.111-117
    • /
    • 2002
  • 개체명 인식은 질의응답(QA), 정보 주줄(IE), 텍스트 마이닝 시스템의 성능 향상에 중요한 역할을 담당한다. 이 논문에서는 교사학습 기반의 한국어 개체명 인식에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있으며, 개체명을 구성하는 단어 사이에는 의존 관계가 존재하고, 개체명과 개체명 주위의 단어 사이에도 문맥적 의존관계를 가지고 있다. 본 논문에서는 가변길이의 개체명과 주변 문맥의 학습을 위해 트라이그램을 이용한 HMM을 사용하였으며, 자료 부족 문제를 해소하기 위해 어휘 기반이 아닌 부개체 유형 기반의 학습을 수행하였다. 학습된 개체명 인식 시스템을 이용하여 경제 분야의 신문 기사에 대한 실험 결과, 84.4%의 정확률과 90.9%의 재현률을 보였다.

  • PDF

Named Entity Recognition Using Bidirectional LSTM CRFs Based on the POS Tag Embedding and the Named Entity Distribution of Syllables (품사 임베딩과 음절 단위 개체명 분포 기반의 Bidirectional LSTM CRFs를 이용한 개체명 인식)

  • Yu, Hongyeon;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.105-110
    • /
    • 2016
  • 개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서는 bidirectional LSTM CRFs가 가장 우수한 성능을 보여주고 있다. 하지만 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이기 때문에 입력이 되는 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 그리고 음절 기반에서 확장된 단어 임베딩 벡터를 사용한다. 음절 기반에서 단어 기반 임베딩 벡터로 확장하기 위하여 bidirectional LSTM을 이용하고, 그 입력으로 학습 데이터에서 추출한 개체명 분포를 이용하였다. 그 결과 사전 학습된 단어 임베딩 벡터만 사용한 것보다 4.93%의 성능 향상을 보였다.

  • PDF

Named Entity Recognition Using Bidirectional LSTM CRFs Based on the POS Tag Embedding and the Named Entity Distribution of Syllables (품사 임베딩과 음절 단위 개체명 분포 기반의 Bidirectional LSTM CRFs를 이용한 개체명 인식)

  • Yu, Hongyeon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.105-110
    • /
    • 2016
  • 개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서는 bidirectional LSTM CRFs가 가장 우수한 성능을 보여주고 있다. 하지만 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이기 때문에 입력이 되는 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 그리고 음절 기반에서 확장된 단어 임베딩 벡터를 사용한다. 음절 기반에서 단어 기반 임베딩 벡터로 확장하기 위하여 bidirectional LSTM을 이용하고, 그 입력으로 학습 데이터에서 추출한 개체명 분포를 이용하였다. 그 결과 사전 학습된 단어 임베딩 벡터만 사용한 것보다 4.93%의 성능 향상을 보였다.

  • PDF

Graph Convolutional Networks for Collective Entity Linking (Graph Convolutional Network 기반 집합적 개체 연결)

  • Lee, Young-Hoon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.170-172
    • /
    • 2019
  • 개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체에 연결하는 것을 의미한다. 문장에 나타나는 개체들은 주로 동일한 주제를 가지게 되는데 본 논문에서는 이러한 특징을 활용하기 위해서 개체들을 그래프상의 노드로 표현하고, 그래프 신경망을 이용하여 주변 노드의 정보를 통해 노드 표상을 업데이트한다. 한국어 위키피디아 링크 데이터를 사용하여 실험을 진행한 결과 개발 셋에서 82.09%, 평가 셋에서 81.87%의 성능을 보였다.

  • PDF

Question Analysis for Constraint-based KBQA (제약기반 KBQA를 위한 질문분석)

  • Heo, Jeong;Lee, Hyung-Jik;Bae, Kyoung-Man;Kim, Hyun-Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.665-668
    • /
    • 2018
  • 본 논문에서는 제약기반 KBQA를 위한 질문분석 기술에 대해서 소개한다. 핵심개체와 속성에 대한 연결 모호성을 해소하기 위해서 세 종류의 제약정보 활용을 제안한다. 세 종류의 제약은 핵심개체에 기반한 제약, 의미정답유형에 기반한 제약, 속성단서에 기반한 제약이다. 제약을 위해서는 질문 내에서 핵심개체와 속성단서를 인식하여야 한다. 본 논문에서는 규칙과 휴리스틱에 기반한 핵심개체와 속성단서 인식 방법에 대해서 소개한다. 핵심개체와 속성단서 인식 실험은 구축된 229개의 질문을 대상으로 수행하였으며, 핵심개체와 속성단서가 모두 정확히 인식된 정확도(accuracy)가 57.21%이고, KBQA 대상질문에서는 71.08%를 보였다.

  • PDF

Comparing Features, Models and Training for Span-based Entity Extraction (스팬 기반 개체 추출을 위한 자질, 모델, 학습 방법 비교)

  • Seungwoo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.388-392
    • /
    • 2023
  • 개체 추출은 정보추출의 기초를 구성하는 태스크로, 관계 추출, 이벤트 추출 등 다양한 정보추출 태스크의 기반으로 중요하다. 최근에는 다중 레이블 개체와 중첩 개체를 다루기 위해 스팬기반의 개체추출이 주류로 연구되고 있다. 본 논문에서는 스팬을 표현하는 다양한 매핑과 자질들을 살펴보고 개체추출의 성능에 어떤 영향을 주는지를 분석하여 최적의 매핑 및 자질 조합을 제시하였다. 또한, 모델 구조에 있어서, 사전 학습 언어모델(PLM) 위에 BiLSTM 블록의 추가 여부에 따른 성능 변화를 분석하고, 모델의 학습에 있어서, 미세조정(finetuing) 이전에 예열학습(warmup training)을 사용하는 것이 효과적인지를 실험을 통해 비교 분석하여 제시하였다.

  • PDF

Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LSTM (Bidirectional Dynamic LSTM을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축)

  • Oh, Sungsik;Lim, Changdae;Ahn, Keeho;Park, Weijin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF