• 제목/요약/키워드: 개체인식

검색결과 449건 처리시간 0.026초

라벨 정보를 이용한 Few-shot Learning 환경에 강건한 중첩 개체명 인식 모델 (A Nested Named Entity Recognition Model Robust in Few-shot Learning Environments using Label Information)

  • 황현선;이창기;고우영;강명철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.622-626
    • /
    • 2023
  • 중첩 개체명 인식(Nested Named Entity Recognition)은 하나의 개체명 표현 안에 다른 개체명 표현이 들어 있는 중첩 구조의 개체명을 인식하는 작업으로, 중첩 개체명 인식을 위한 학습데이터 구축 작업은 일반 개체명 인식 학습데이터 구축보다 어렵다는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 Few-shot Learning 환경에 강건한 중첩 개체명 인식 모델을 제안한다. 이를 위해, 기존의 Biaffine 중첩 개체명 인식 모델의 출력 레이어를 라벨 의미 정보를 활용하도록 변경하여 학습데이터가 적은 환경에서 중첩 개체명 인식의 성능을 향상시키도록 하였다. 실험 결과 GENIA 중첩 개체명 인식 데이터의 5-shot, 10-shot, 20-shot 환경에서 기존의 Biaffine 모델보다 평균 10%p이상의 높은 F1-measure 성능을 보였다.

  • PDF

계층적 레이블 임베딩을 이용한 세부 분류 개체명 인식 (Fine-grained Named Entity Recognition using Hierarchical Label Embedding)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2021
  • 개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.

  • PDF

딥러닝 기반의 개체명 인식을 위한 효과적인 사전 자질 사용 방법 (How to Use Effective Dictionary Feature for Deep Learning based Named Entity Recognition)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.293-296
    • /
    • 2019
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간과 같이 고유한 의미를 갖는 단어들을 찾아 개체명을 부착하는 기술이다. 최근 개체명 인식기는 형태소 단위나 음절 단위의 입력을 사용하는 연구가 주로 진행되고 있다. 그러나 형태소 단위 개체명 인식은 미등록어를 처리하지 못하는 문제점이 존재하고 음절 단위 개체명 인식은 단어의 의미를 제대로 반영하지 못하는 문제점이 존재한다. 본 논문에서는 이 문제점을 보완하기 위해 품사 정보를 활용한 음절 단위 개체명 인식기를 제안한다. 또한 개체명 인식 성능에 큰 영향을 미치는 개체명 사전 자질을 더 효과적으로 사용할 수 있는 방법을 제안하며 이 방법을 사용했을 때 기존의 방법보다 향상된 개체명 인식 성능(F1-score 0.8576)을 보였다.

  • PDF

지식증류를 활용한 지속적 한국어 개체명 인식 (Continuous Korean Named Entity Recognition Using Knowledge Distillation)

  • 장준서;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.505-509
    • /
    • 2023
  • 개체명 인식은 주어진 텍스트에서 특정 유형의 개체들을 식별하고 추출하는 작업이다. 일반적인 딥러닝 기반 개체명 인식은 사전에 개체명들을 모두 정의한 뒤 모델을 학습한다. 하지만 실제 학습 환경에서는 지속적으로 새로운 개체명이 등장할 수 있을뿐더러 기존 개체명을 학습한 데이터가 접근이 불가할 수 있다. 또한, 새로 모델을 학습하기 위해 새로운 데이터에 기존 개체명을 수동 태깅하기엔 많은 시간과 비용이 든다. 해결 방안으로 여러 방법론이 제시되었지만 새로운 개체명을 학습하는 과정에서 기존 개체명 지식에 대한 망각 현상이 나타났다. 본 논문에서는 지식증류를 활용한 지속학습이 한국어 개체명 인식에서 기존 지식에 대한 망각을 줄이고 새로운 지식을 학습하는데 효과적임을 보인다. 국립국어원에서 제공한 개체명 인식 데이터로 실험과 평가를 진행하여 성능의 우수성을 보인다.

  • PDF

한국어 텍스트의 개체 URI 탐지: 품사 태깅 독립적 개체명 인식과 중의성 해소 (A Non-morphological Approach for DBpedia URI Spotting within Korean Text)

  • 김영식;함영균;김지성;황도삼;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.100-106
    • /
    • 2014
  • URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.

  • PDF

휴리스틱을 이용한 개체명 인식 학습 말뭉치 품질 향상 (Improving Quality of Training Corpus for Named Entity Recognition Using Heuristic Rules)

  • 이성희;송영길;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.202-205
    • /
    • 2015
  • 개체명 인식은 문서에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 지도 학습 기법을 이용한 개체명 인식을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 말뭉치 구축은 인력과 시간이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하고 초기 학습 말뭉치의 노이즈를 제거하여 말뭉치의 품질을 향상시키는 방법을 제안한다. 제안 방법은 반자동 개체명 사전 구축 방법으로 구축한 개체명 사전과 원거리 감독법을 사용하여 초기 개체명 범주 부착 말뭉치를 구축한다. 그리고 휴리스틱을 이용하여 초기 말뭉치의 노이즈를 제거하여 학습 말뭉치의 품질을 향상시키고 개체명 인식의 성능을 향상시킨다. 실험 결과 휴리스틱 적용을 통해 개체명 인식의 F1-점수를 67.36%에서 73.17%로 향상시켰다.

  • PDF

특허 개체명 인식에 대한 기계학습 사례 (Named Entity Recognition for Patent Data by Machine Learning)

  • 이태석;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.183-186
    • /
    • 2014
  • 특허 분석에서 관심 있는 기술명, 서비스명, 제품명을 인식하도록 기계학습 기법을 사용해 개체명 인식기의 성능을 평가해 보았다. 개체인식을 위한 엔진은 스탠포드 대학의 NER과 CRF++을 사용하였다. 그 결과 F1값인 0.5612로 나타났다. 이것은 인명, 지역명, 조직명 개체를 인식하는 다른 연구에서 나타난 0.7857보다 0.2245 떨어지는 결과이다. 특허 개체명 인식에 대한 자질값 선정과 사전처리에 대한 더 많은 연구가 필요하다.

  • PDF

자동 구축된 문맥 패턴과 개체명 사전에 기반한 제목 개체명 인식 (Title Named Entity Recognition based on Automatically Constructed Context Patterns and Entity Dictionary)

  • 이주영;송영인;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.40-45
    • /
    • 2004
  • 본 논문에서는 영화명, 도서명, 음악명 등의 제목 개체명 인식을 위한 새로운 방법에 대해 기술한다. 제목 개체명은 개체명 내부에 기존 MUC에서 분류한 인명, 지명, 기관명 등과 같은 일반적인 개체명과는 달리, 철자 자질 등 내부 자질을 사용하기 어려우며, 제목 개체명 부착 말뭉치가 없기 때문에 기존 연구에서 좋은 성능을 보인 방법들을 적용하기는 힘들다. 이러한 문제를 해결하기 위해 본 논문에서는 원시 말뭉치에서 자동으로 구축한 문맥 패턴 정보와 개체명 사전을 사용하여 제목 개체명을 인식하는 방법을 제안한다. 패턴과 제목 개체명 사전 구축을 위해, 사전 정보를 이용한 패턴 확장과 이렇게 구축된 패턴 정보를 사용한 사전 확장 단계를 반복 수행하여 문맥 패턴과 제목 개체명 사진을 점진적으로 증가시키는 방법을 사용하였으며, 이러한 정보가 제목 개체명 인식에 도움이 됨을 실험적으로 입증하였다.

  • PDF

관세데이터를 활용한 개체명 인식 (Named Entity Recognition Using Customs Data)

  • 유경훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.434-436
    • /
    • 2023
  • 본 연구는 관세 데이터를 BERT 기반 모델을 활용한 개체명 인식(NER)모델을 제안한다. 관세 분야 국내 첫 시도이며, 선행연구들과 달리 개체명 인식에 초점을 맞춘다. 관세 관련 텍스트에서 고유한 의미의 개체를 인식하는 것이 주요 목표이다. 이 연구는 관세 분야의 개체명 인식에 대한 이해도를 높이고 향후 HS 코드 검색 시스템 개발에 대한 기초 연구를 제공한다.

Conditional Random Fields를 이용한 세부 분류 개체명 인식 (Fine-Grained Named Entity Recognition using Conditional Random Fields for Question Answering)

  • 이창기;황이규;오효정;임수종;허정;이충희;김현진;왕지현;장명길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.268-272
    • /
    • 2006
  • 질의응답 시스템은 사용자 질의에 해당하는 정답을 찾기 위해서 세부 분류된 개체명을 사용한다. 이러한 세부 분류 개체명 인식을 위해서 대부분의 시스템이 일반 대분류 개체명인식 후에 사전 등을 이용하여 세부 분류로 나누는 방법을 이용하고 있다. 본 논문에서는 질의응답 시스템을 위한 세부 분류 개체명 인식을 위해서 Conditional Random Fields를 이용한다. 개체명 인식의 과정을 개체명 경계 인식과 경계가 인식된 개체명의 클래스 분류의 두 단계로 나누어, 개체명 경계 인식에 Conditional Random Fields를 이용하고, 경계 인식된 개체명의 클래스 분류에는 Maximum Entropy를 이용한다. 실험결과 147개의 세부분류 개체명 인식에 대해서 정확도 85.8%, 재현률 81.1%. F1=83.4의 성능을 얻었고. baseline model 보다 학습 시간이 27%로 줄고 성능은 증가하였다. 또한 제안된 세부 분류개체명 인식기를 이용하여 질의응답 시스템에 적용한 결과 26%의 성능향상을 보였다.

  • PDF