• 제목/요약/키워드: 개체명 인식 및 분류

검색결과 32건 처리시간 0.02초

계층적 레이블 임베딩을 이용한 세부 분류 개체명 인식 (Fine-grained Named Entity Recognition using Hierarchical Label Embedding)

  • 김홍진;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2021
  • 개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.

  • PDF

Conditional Random Fields를 이용한 세부 분류 개체명 인식 (Fine-Grained Named Entity Recognition using Conditional Random Fields for Question Answering)

  • 이창기;황이규;오효정;임수종;허정;이충희;김현진;왕지현;장명길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.268-272
    • /
    • 2006
  • 질의응답 시스템은 사용자 질의에 해당하는 정답을 찾기 위해서 세부 분류된 개체명을 사용한다. 이러한 세부 분류 개체명 인식을 위해서 대부분의 시스템이 일반 대분류 개체명인식 후에 사전 등을 이용하여 세부 분류로 나누는 방법을 이용하고 있다. 본 논문에서는 질의응답 시스템을 위한 세부 분류 개체명 인식을 위해서 Conditional Random Fields를 이용한다. 개체명 인식의 과정을 개체명 경계 인식과 경계가 인식된 개체명의 클래스 분류의 두 단계로 나누어, 개체명 경계 인식에 Conditional Random Fields를 이용하고, 경계 인식된 개체명의 클래스 분류에는 Maximum Entropy를 이용한다. 실험결과 147개의 세부분류 개체명 인식에 대해서 정확도 85.8%, 재현률 81.1%. F1=83.4의 성능을 얻었고. baseline model 보다 학습 시간이 27%로 줄고 성능은 증가하였다. 또한 제안된 세부 분류개체명 인식기를 이용하여 질의응답 시스템에 적용한 결과 26%의 성능향상을 보였다.

  • PDF

Bidirectional Dynamic LSTM을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축 (Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LSTM)

  • 오성식;임창대;안기호;박외진
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

Bidirectional Dynamic LSTM 을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축 (Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LST)

  • 오성식;임창대;안기호;박외진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

ELECTRA와 Label Attention Network를 이용한 한국어 개체명 인식 (Korean Named Entity Recognition Using ELECTRA and Label Attention Network)

  • 김홍진;오신혁;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.333-336
    • /
    • 2020
  • 개체명 인식이란 문장에서 인명, 지명, 기관명 등과 같이 고유한 의미를 갖는 단어를 찾아 개체명을 분류하는 작업이다. 딥러닝을 활용한 연구가 수행되면서 개체명 인식에 RNN(Recurrent Neural Network)과 CRF(Condition Random Fields)를 결합한 연구가 좋은 성능을 보이고 있다. 그러나 CRF는 시간 복잡도가 분류해야 하는 클래스(Class) 개수의 제곱에 비례하고, 최근 RNN과 Softmax 모델보다 낮은 성능을 보이는 연구도 있었다. 본 논문에서는 CRF의 단점을 보완한 LAN(Label Attention Network)와 사전 학습 언어 모델인 음절 단위 ELECTRA를 활용하는 개체명 인식 모델을 제안한다.

  • PDF

Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류 (Korean Named Entity Recognition and Classification using Word Embedding Features)

  • 최윤수;차정원
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.678-685
    • /
    • 2016
  • 한국어 개체명 인식에 다양한 연구가 있었지만, 영어 개체명 인식에 비해 자질이 부족한 문제를 가지고 있다. 본 논문에서는 한국어 개체명 인식의 자질 부족 문제를 해결하기 위해 word embedding 자질을 개체명 인식에 사용하는 방법을 제안한다. CBOW(Continuous Bag-of-Words) 모델을 이용하여 word vector를 생성하고, word vector로부터 K-means 알고리즘을 이용하여 군집 정보를 생성한다. word vector와 군집 정보를 word embedding 자질로써 CRFs(Conditional Random Fields)에 사용한다. 실험 결과 TV 도메인과 Sports 도메인, IT 도메인에서 기본 시스템보다 각각 1.17%, 0.61%, 1.19% 성능이 향상되었다. 또한 제안 방법이 다른 개체명 인식 및 분류 시스템보다 성능이 향상되는 것을 보여 그 효용성을 입증했다.

개체명 인식을 위한 개체명 사전 자동 구축 (Automatic Construction of a Named Entity Dictionary for Named Entity Recognition)

  • 전원표;송영길;최맹식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.82-85
    • /
    • 2013
  • 개체명 인식기에 대한 연구에서 개체명 사전은 필수적으로 필요하다. 그러나 공개된 개체명 사전은 거의 없기 때문에, 본 논문에서는 디비피디아의 데이터로부터 개체명을 효과적으로 추출하여 자동으로 구축할 수 있는 방법을 제안한다. 제안 방법은 엔트리의 '이름'과 '분류' 정보를 사용한다. 엔트리의 '이름'은 개체명으로 사용하고, 엔트리의 '분류'는 각 개체명 클래스와의 상호정보량을 계산하여 엔트리와 개체명 클래스 사이의 점수를 계산한다. 이렇게 계산된 점수를 이용하여 개체명과 개체명 클래스를 매핑한다. 그 결과 76.7%의 평균 정확률을 보였다.

  • PDF

자동 구축된 문맥 패턴과 개체명 사전에 기반한 제목 개체명 인식 (Title Named Entity Recognition based on Automatically Constructed Context Patterns and Entity Dictionary)

  • 이주영;송영인;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.40-45
    • /
    • 2004
  • 본 논문에서는 영화명, 도서명, 음악명 등의 제목 개체명 인식을 위한 새로운 방법에 대해 기술한다. 제목 개체명은 개체명 내부에 기존 MUC에서 분류한 인명, 지명, 기관명 등과 같은 일반적인 개체명과는 달리, 철자 자질 등 내부 자질을 사용하기 어려우며, 제목 개체명 부착 말뭉치가 없기 때문에 기존 연구에서 좋은 성능을 보인 방법들을 적용하기는 힘들다. 이러한 문제를 해결하기 위해 본 논문에서는 원시 말뭉치에서 자동으로 구축한 문맥 패턴 정보와 개체명 사전을 사용하여 제목 개체명을 인식하는 방법을 제안한다. 패턴과 제목 개체명 사전 구축을 위해, 사전 정보를 이용한 패턴 확장과 이렇게 구축된 패턴 정보를 사용한 사전 확장 단계를 반복 수행하여 문맥 패턴과 제목 개체명 사진을 점진적으로 증가시키는 방법을 사용하였으며, 이러한 정보가 제목 개체명 인식에 도움이 됨을 실험적으로 입증하였다.

  • PDF

D-Tag를 이용한 한국어 개체명 인식 (Korean Named Entity Recognition using D-Tag)

  • 김은수;도수종;박천음
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-40
    • /
    • 2022
  • 본 논문에서는 시퀀스 레이블링 문제(sequence labeling problem)인 개체명 인식에 사용할 새로운 태깅 포맷인 Delimiter tag (D-tag)를 소개한다. 시퀀스 레이블링 문제에서 사용하는 BIO-tag 포맷은 개체명 레이블을 B (beginning)와 I (inside) 의미의 레이블로 확장하여 타겟 클래스의 수가 2배 증가한다. 또한 BIO-tag 포맷을 사용할 경우, 모델이 B와 I 를 잘못 분류하는 문제가 발생하며, 레이블 수가 많은 세부 분류 개체명의 경우에는 label confusion을 야기한다. 본 논문에서 제안한 D-tag 포맷은 타겟 클래스의 수를 증가시키지 않기 때문에 앞서 언급한 문제를 해결할 수 있다. 실험 결과, D-tag를 사용하여 학습한 모델이 BIO-tag를 사용한 경우보다 더 좋은 성능을 보여, 유망함을 확인하였다.

  • PDF

상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식 (Named Entity Recognition based on CRF reflecting relative weight)

  • 정진욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF