• 제목/요약/키워드: 개체명 문맥 표현 학습

검색결과 3건 처리시간 0.015초

개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정 (Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary)

  • 박준모;노윤석;박세영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF

의미 정보와 BERT를 결합한 개념 언어 모델 (A Concept Language Model combining Word Sense Information and BERT)

  • 이주상;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-7
    • /
    • 2019
  • 자연어 표상은 자연어가 가진 정보를 컴퓨터에게 전달하기 위해 표현하는 방법이다. 현재 자연어 표상은 학습을 통해 고정된 벡터로 표현하는 것이 아닌 문맥적 정보에 의해 벡터가 변화한다. 그 중 BERT의 경우 Transformer 모델의 encoder를 사용하여 자연어를 표상하는 기술이다. 하지만 BERT의 경우 학습시간이 많이 걸리며, 대용량의 데이터를 필요로 한다. 본 논문에서는 빠른 자연어 표상 학습을 위해 의미 정보와 BERT를 결합한 개념 언어 모델을 제안한다. 의미 정보로 단어의 품사 정보와, 명사의 의미 계층 정보를 추상적으로 표현했다. 실험을 위해 ETRI에서 공개한 한국어 BERT 모델을 비교 대상으로 하며, 개체명 인식을 학습하여 비교했다. 두 모델의 개체명 인식 결과가 비슷하게 나타났다. 의미 정보가 자연어 표상을 하는데 중요한 정보가 될 수 있음을 확인했다.

  • PDF

위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법 (A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia)

  • 이호경;안재현;윤정민;배경만;고영중
    • 정보과학회 논문지
    • /
    • 제44권8호
    • /
    • pp.813-821
    • /
    • 2017
  • 개체 링킹은 입력된 질의에 존재하는 개체를 표현한 개체 표현(entity mention)을 지식베이스에 존재하는 개체와 연결하여 의미를 파악하는 연구이다. 개체 링킹에 관한 연구는 지식 베이스 구축 문제, 다중 표현 문제, 개체 연결 중의성 문제, NIL 개체 인식 문제가 존재한다. 본 연구에서는 지식 베이스 구축 문제와 다중 표현 문제를 해결하기 위해 위키피디아를 기반으로 개체 이름 사전을 구축한다, 또한, 문맥 유사도, 의미적 관련성, 단서 단어 점수, 개체 표현의 개체명 타입 유사도, 개체 이름 매칭 점수, 개체인기도 점수 자질들을 기반으로 SVM(support vector machine)을 학습하여, NIL 개체를 인식하는 문제와 개체 연결 중의성을 해소하는 방법을 제안한다. 구축한 지식 베이스를 기반으로 제안한 두 방법을 순차적으로 적용하였을 때 좋은 개체 링킹 성능을 얻었다. 개체 링킹 시스템의 성능은 NIL 개체 인식 성능이 83.66%, 중의성 해소 성능이 90.81%의 F1 점수를 보였다.