• Title/Summary/Keyword: 개체명

Search Result 438, Processing Time 0.024 seconds

Application of Word Vector with Korean Specific Feature to Bi-LSTM model for Named Entity Recognition (한국어 특질을 고려한 단어 벡터의 Bi-LSTM 기반 개체명 모델 적용)

  • Nam, Sukhyun;Hahm, Younggyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.147-150
    • /
    • 2017
  • Deep learning의 개발에 따라 개체명 인식에도 neural network가 적용된 연구가 활발히 일어나고 있다. 영어권 개체명 인식에서는 F1 score 90%을 웃도는 성능을 내는 연구들이 나오고 있다. 하지만 한국어는 영어와 언어적 특질이 많이 달라 이를 그대로 적용시키는 데는 어려움이 있어 영어권 개체명 인식기에 비해 비교적 낮은 성능을 보인다. 본 논문에서는 "하다" 접사의 동사형이 보존된 워드 임베딩을 사용하고 한국어 개체명의 특징을 담은 one-hot 벡터를 추가하여 한국어의 특질에 보다 적합한 데이터를 deep learning 기술에 적용하였다.

  • PDF

Biological Language Resource Construction and Named Entity Recognition System using UMLS (ULMS를 이용한 언어자원 구축 및 생물학적 개체명 인식 시스템)

  • Lee, Hyun-Sook;Kim, Tae-Hyun;Jang, Hyun-Chul;Park, Soo-Jun;Park, Seon-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.833-836
    • /
    • 2003
  • 본 논문에서는 생물학적 문헌으로부터 유의미한 정보를 추출하는 바이오 텍스트 마이닝의 기본 단계인 생물학적 개체명 인식 모델을 제안하였다. 기존의 생물학적 개체명 인식은 규칙 혹은 코퍼스 구축뿐만 아니라 개체명 인식에 요구되는 기본 자원을 구축하는데만도 많은 시간과 비용이 요구되므로 한정된 도메인을 대상으로 연구가 진행되어 왔다. 본 논문에서 제안하는 개체명 인식 방법은 이러한 비용 문제 및 새로운 도메인으로의 이식성 문제를 극복하기 위해 UMLS 로부터 통계적인 방법으로 정보를 추출해 기본적인 언어자원을 구축하고 이를 이용해 규칙을 생성함으로써 개체명인식을 수행한다. 본 연구에서 제안하는 방법은 바이오 텍스트 마이닝 연구의 도메인 한정적인 문제를 해결하는데 기여할 수 있을 것으로 기대된다.

  • PDF

Named Entity Boundary Recognition Using Hidden Markov Model and Hierarchical Information (은닉 마르코프 모델과 계층 정보를 이용한 개체명 경계 인식)

  • Lim, Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.182-187
    • /
    • 2006
  • This paper proposes a method for boundary recognition of named entity using hidden markov model and ontology information of biological named entity. We uses smoothing method using 31 feature information of word and hierarchical information to alleviate sparse data problem in HMM. The GENIA corpus version 2.1 was used to train and to experiment the proposed boundary recognition system. The experimental results show that the proposed system outperform the previous system which did not use ontology information of hierarchical information and smoothing technique. Also the system shows improvement of execution time of boundary recognition.

  • PDF

Conditional Random Fields based Named Entity Recognition Using Korean Lexical Semantic Network (한국어 어휘의미망을 활용한 Conditional Random Fields 기반 한국어 개체명 인식)

  • Park, Seo-Yeon;Ock, Cheol-Young;Shin, Joon-Choul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.343-346
    • /
    • 2020
  • 개체명 인식은 주어진 문장 내에서 OOV(Out of Vocaburary)로 자주 등장하는 고유한 의미가 있는 단어들을 미리 정의된 개체의 범주로 분류하는 작업이다. 최근 개체명이 문장 내에서 OOV로 등장하는 문제를 해결하기 위해 외부 리소스를 활용하는 연구들이 많이 진행되었다. 본 논문은 의미역, 의존관계 분석에 한국어 어휘지도를 이용한 자질을 추가하여 성능 향상을 보인 연구들을 바탕으로 이를 한국어 개체명 인식에 적용하고 평가하였다. 실험 결과, 한국어 어휘지도를 활용한 자질을 추가로 학습한 모델이 기존 모델에 비해 평균 1.83% 포인트 향상하였다. 또한, CRF 단일 모델만을 사용했음에도 87.25% 포인트라는 높은 성능을 보였다.

  • PDF

Korean Chemical Named Entity Recognition in Patent Documents (특허문서의 한국어 화합물 개체명 인식)

  • Jinseop Shin;Kyung-min Kim;Seongchan Kim;Mun Yong Yi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.522-524
    • /
    • 2023
  • 화합물 관련 한국어 문서는 화합물 정보를 추출하여 그 용도를 발견할 수 있는 중요한 문서임에도 불구하고 자연어 처리를 위한 말뭉치의 구축이 되지 않아서 활용이 어려웠다. 이 연구에서는 최초로 한국 특허 문서에서 한국어 화합물 개체명 인식(Chemical Named Entity Recognition, CNER)을 위한 말뭉치를 구축하였다. 또한 구축된 CNER 말뭉치를 기본 모델인 Bi-LSTM과 KorBERT 사전학습 모델을 미세 조정하여 개체명 인식을 수행하였다. 한국어 CNER F1 성능은 Bi-LSTM 기반 모델이 83.71%, KoCNER 말뭉치를 활용하는 자연어 처리 기술들은 한국어 논문에 대한 화합물 개체명 인식으로 그 외연을 확대하고, 한국어로 작성된 화합물 관련 문서에서 화합물 명칭뿐만 아니라 물성, 반응 등의 개체를 추출하고 관계를 규명하는데 활용 될 수 있을 것이다.

  • PDF

Extracting English-Korean Named-Entity Word-pairs using Wikipedia (위키피디아를 이용한 영-한 개체명 대역어 쌍 구축)

  • Kim, Eun-Kyung;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

Named Entity Linking Based on Deep Learning Model (딥러닝 모형 기반 한국어 개체명 연결)

  • Sohn, Dae-Neung;Lee, Dongju;Lee, Yong-Hun;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.90-95
    • /
    • 2016
  • 개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.

  • PDF

Lexicon Feature Infused Character-Based LSTM CRFs for Korean Named Entity Recognition (문자 기반 LSTM-CRF 한국어 개체명 인식을 위한 사전 자질 활용)

  • Min, Jin-Woo;Na, Seung-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.99-101
    • /
    • 2016
  • 문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.

  • PDF

KAISER: Named Entity Recognizer using Word Embedding-based Self-learning of Gazettes (KAISER: 워드 임베딩 기반 개체명 어휘 자가 학습 방법을 적용한 개체명 인식기)

  • Hahm, Younggyun;Choi, Dongho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.337-339
    • /
    • 2016
  • 본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.

  • PDF

Lexicon Feature Infused Character-Based LSTM CRFs for Korean Named Entity Recognition (문자 기반 LSTM-CRF 한국어 개체명 인식을 위한 사전 자질 활용)

  • Min, Jin-Woo;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.99-101
    • /
    • 2016
  • 문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능 향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.

  • PDF