Annual Conference on Human and Language Technology
/
2021.10a
/
pp.124-130
/
2021
기계요약의 사실 불일치는 생성된 요약이 원문과 다른 사실 정보를 전달하는 현상이며, 특히 개체명이 잘못 사용되었을 때 기계요약의 신뢰성을 크게 훼손한다. 개체명의 수정을 위해서는 두 가지 작업을 수행해야한다. 먼저 요약 내 각 개체명이 올바르게 쓰였는지 판별을 해야하며, 이후 잘못된 개체명을 맞게 고치는 작업이 필요하다. 본 논문에서는 두 가지 작업 모두 각 개체명을 문맥적으로 이해함으로써 해결할 수 있다고 가정하고, 이에 따라 두 작업에 대한 다중 작업 학습 방법을 제안한다. 제안한 방법을 통해 학습한 모델은 생성된 기계요약에 대한 후처리 교정을 수행할 수 있다. 제안 모델을 평가하기 위해 강제적으로 개체명을 훼손시킨 요약데이터와 기계 요약 데이터에 대해서 성능을 평가 하였으며, 다른 개체명 수정 모델과 비교하였다. 제안모델은 개체명 수준에서 92.9%의 교정 정확도를 달성했으며, KoBART 요약모델이 만든 기계요약의 사실 정확도 4.88% 포인트 향상시켰다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.172-175
/
2018
환자의 병력을 서술하는 임상문서에서 임상 개체명들은 그들 사이에 개체명이 아닌 단어들이 위치하기 때문에 거리상으로 서로 떨어져 있고, 임상 개체명인식에 많이 사용되는 조건부무작위장(conditional random fields; CRF) 모델은 Markov 속성을 따르기 때문에 서로 떨어져 있는 개체명 라벨 간의 전이 정보는 모델의 계산에서 무시된다. 본 논문에서는 라벨링 모델에 서로 떨어진 개체명 간 전이 관계를 표현하기 위하여 CRF 모델의 구조를 변경하는 방법론을 소개한다. 제안된 CRF 모델 디자인에서는 모델의 계산효율성을 빠르게 유지하기 위하여 Markov 속성을 유지하는 1차 모델 구조를 유지한다. 모델은 선행하는 개체명의 라벨 정보를 후행하는 개체명 엔터티에게 전달하기 위하여 선행 개체명의 라벨을 뒤 따르는 비개체명 라벨에 전이시키고 이를 통해 후행하는 개체명은 선행하는 개체명의 라벨 정보를 알 수 있게 된다. 라벨의 고차 전이 정보를 전달함에도 모델의 구조는 1차 전이 구조를 유지함으로 n차 구조의 모델보다 빠른 계산 속도를 유지할 수 있게 된다. 모델의 성능 평가를 위하여 서울대학교병원 류머티즘내과에서 퇴원한 환자들의 퇴원요약지에 병력과 관련된 엔터티가 태깅된 평가 데이터와 i2b2 2012/VA 임상자연어처리 shared task의 임상 개체명 추출 데이터를 사용하였고 기본 CRF 모델들(1차, 2차)과 비교하였다. 피처 조합에 따라 모델들을 평가한 결과 제안한 모델이 거의 모든 경우에서 기본 모델들에 비하여 F1-score의 성능을 향상시킴을 관찰할 수 있었다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.183-186
/
2014
특허 분석에서 관심 있는 기술명, 서비스명, 제품명을 인식하도록 기계학습 기법을 사용해 개체명 인식기의 성능을 평가해 보았다. 개체인식을 위한 엔진은 스탠포드 대학의 NER과 CRF++을 사용하였다. 그 결과 F1값인 0.5612로 나타났다. 이것은 인명, 지역명, 조직명 개체를 인식하는 다른 연구에서 나타난 0.7857보다 0.2245 떨어지는 결과이다. 특허 개체명 인식에 대한 자질값 선정과 사전처리에 대한 더 많은 연구가 필요하다.
Hyerin Kang;Li Fei;Yejee kang;Seoyoon Park;Yeseul Cho;Hyeonmin Seong;Sungsoon Jang;Hansaem Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.185-191
/
2022
개인정보에 대한 경각심 및 중요성 증대에 따라 텍스트 내 개인정보를 탐지하는 태스크가 주목받고 있다. 본 연구에서는 개인정보 탐지 및 비식별화를 위한 개인정보 특화 개체명 태그셋 7개를 고안하는 한편 이를 바탕으로 비식별화된 원천 데이터에 가상의 데이터를 대치하고 개체명을 주석함으로써 개인정보 특화 개체명 데이터셋을 구축하였다. 개인정보 분류 실험에는 KR-ELECTRA를 사용하였으며, 실험 결과 일반 개체명 및 정규식 바탕의 규칙 기반 개인정보 탐지 성능과 비교하여 특화 개체명을 활용한 딥러닝 기반의 개인정보 탐지가 더 높은 성능을 보임을 확인하였다.
Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.324-326
/
2017
개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.330-332
/
2017
개체명 인식(Named Entity Recognition, 이하 NER)은 인명(PS), 기관명(OG), 장소(LC), 날짜(DT), 시간(TI) 등에 해당하는 개체명에 일정한 태깅 값을 주어 그 정보를 가시화하는 작업이다. 한국어 개체명 인식은 아직 그 자질이 충분히 밝혀져 있지 않아 자연어 처리 분야의 발전을 더디게 하는 한 요소로 작용하고 있다. 한국어가 음절 기반으로 단어를 형성하고 비교적 어순이 자유롭다는 특성이 있기에, 이런 특징을 잘 포착할 수 있는 "음절 기반의 Convolutional Neural Network(CNN)"의 아키텍쳐를 제안하여 66.80%의 성능을 보였다. 이 방법을 사용하면 형태소 분석등 개체명 이전 단계에서 발생하는 오류에 의해 개체명 인식(NER)의 성능이 떨어지는 문제를 해결할 수 있고, 조사나 어미 등을 제거하기 위한 후처리를 생략할 수 있다.
Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.324-326
/
2017
개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.
개체명 인식(Named Entity Recognition, 이하 NER)은 인명(PS), 기관명(OG), 장소(LC), 날짜(DT), 시간(TI) 등에 해당하는 개체명에 일정한 태깅 값을 주어 그 정보를 가시화하는 작업이다. 한국어 개체명 인식은 아직 그 자질이 충분히 밝혀져 있지 않아 자연어 처리 분야의 발전을 더디게 하는 한 요소로 작용하고 있다. 한국어가 음절 기반으로 단어를 형성하고 비교적 어순이 자유롭다는 특성이 있기에, 이런 특징을 잘 포착할 수 있는 "음절 기반의 Convolutional Neural Network(CNN)"의 아키텍쳐를 제안하여 66.80%의 성능을 보였다. 이 방법을 사용하면 형태소 분석등 개체명 이전 단계에서 발생하는 오류에 의해 개체명 인식(NER)의 성능이 떨어지는 문제를 해결할 수 있고, 조사나 어미 등을 제거하기 위한 후처리를 생략할 수 있다.
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.171-174
/
2013
본 논문은 모바일 기기에서 일정을 메모하거나 음성 인식 등의 인터페이스로부터 일정 관리, 약속과 관련된 문구가 입력되었을 때 입력 문자열로부터 개체명을 인식하여 시간, 장소, 참석자 등을 일정 관리 시스템에 자동으로 등록하는 개체명 인식 시스템을 개발하는 방법에 관한 연구이다. 일정 관리의 편의성을 위한 개체명 인식 시스템을 개발하기 위하여 개체명 사전을 구축하고, 자연어 처리 기술을 이용하여 정확하고 향후 발전 가능성이 높은 시스템을 개발하고자 한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.333-336
/
2020
개체명 인식이란 문장에서 인명, 지명, 기관명 등과 같이 고유한 의미를 갖는 단어를 찾아 개체명을 분류하는 작업이다. 딥러닝을 활용한 연구가 수행되면서 개체명 인식에 RNN(Recurrent Neural Network)과 CRF(Condition Random Fields)를 결합한 연구가 좋은 성능을 보이고 있다. 그러나 CRF는 시간 복잡도가 분류해야 하는 클래스(Class) 개수의 제곱에 비례하고, 최근 RNN과 Softmax 모델보다 낮은 성능을 보이는 연구도 있었다. 본 논문에서는 CRF의 단점을 보완한 LAN(Label Attention Network)와 사전 학습 언어 모델인 음절 단위 ELECTRA를 활용하는 개체명 인식 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.