• Title/Summary/Keyword: 개체명

Search Result 438, Processing Time 0.033 seconds

Implementation of a Dialogue Interface System Using Pattern Matching and Statistical Modeling (패턴 매칭과 통계 모델링을 이용한 대화 인터페이스 시스템의 구현)

  • Kim, Hark-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.3
    • /
    • pp.67-73
    • /
    • 2007
  • In this paper, we review essential constituents of a dialogue interface system and propose practical methods to implement the each constituent. The implemented system consists of a discourse manager, an intention analyzer, a named entity recognizer, a SQL query generator, and a response generator. In the progress of implementation, the intention analyzer uses a maximum entropy model based on statistics because the domain dependency of the intention analyzer is comparatively low. The others use a simple pattern matching method because they needs high domain portability. In the experiments in a schedule arrangement domain, the implemented system showed the precision of 88.1% in intention analysis and the success rate of 83,4% in SQL query generation.

  • PDF

ManiFL : A Better Natural-Language-Processing Tool Based On Shallow-Learning (ManiFL : 얕은 학습 기반의 더 나은 자연어처리 도구)

  • Shin, Joon-Choul;Kim, Wan-Su;Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.311-315
    • /
    • 2021
  • 근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.

  • PDF

A Global-Interdependence Pairwise Approach to Entity Linking Using RDF Knowledge Graph (개체 링킹을 위한 RDF 지식그래프 기반의 포괄적 상호의존성 짝 연결 접근법)

  • Shim, Yongsun;Yang, Sungkwon;Kim, Hong-Gee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2019
  • There are a variety of entities in natural language such as people, organizations, places, and products. These entities can have many various meanings. The ambiguity of entity is a very challenging task in the field of natural language processing. Entity Linking(EL) is the task of linking the entity in the text to the appropriate entity in the knowledge base. Pairwise based approach, which is a representative method for solving the EL, is a method of solving the EL by using the association between two entities in a sentence. This method considers only the interdependence between entities appearing in the same sentence, and thus has a limitation of global interdependence. In this paper, we developed an Entity2vec model that uses Word2vec based on knowledge base of RDF type in order to solve the EL. And we applied the algorithms using the generated model and ranked each entity. In this paper, to overcome the limitations of a pairwise approach, we devised a pairwise approach based on comprehensive interdependency and compared it.

Improvement of Reputation-based Trust Management for Hybrid Cloud Computing (하이브리드 클라우드의 기존 Reputation-based Trust Management 방식 개선)

  • Shin, Dong-Hyuk;Jung, Jun-Kwon;Chung, Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1104-1107
    • /
    • 2012
  • 최근에 주목받고 있는 하이브리드 클라우드는 기존 퍼블릭과 프라이빗 클라우드의 이점을 결합한 방식으로, 보안성과 자원 효율성이 뛰어나다는 장점이 있다. 하지만 하이브리드 클라우드 시스템을 구성하는 각각의 클라우드 개체들은 성능이 향상됨에 따라 더 역동적으로 작동하는 반면, 기존에 형성된 개체 간 관계는 차츰 느슨해지고 있기 때문에 개체 간 협력과 지속적인 신뢰 관리가 반드시 필요하다. 신뢰성 관리 시스템(Trust Management System)은 유저들의 피드백을 DB화 해서 신뢰적인 개체를 판별하는데 도움을 준다. 이 시스템은 신뢰성이라는 가치를 판단하는 근거가 매우 주관적이라는 단점을 가지고 있어 부작용이 발생하고 있다. 본 논문에서는 신뢰성 수치(Trust Value)를 계산하기 위한 파라미터에 객관적인 기준을 도입하였다. 따라서 주관적 판단과 객관적 근거가 조화된 수치를 도출하여 개체의 독립적인 의사 결정에 도움을 줌으로써 신뢰성 관리 시스템의 신뢰성을 높였다.

Document Embedding for Entity Linking in Social Media (문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결)

  • Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

Author Entity Identification using Representative Properties in Linked Data (대표 속성을 이용한 저자 개체 식별)

  • Kim, Tae-Hong;Jung, Han-Min;Sung, Won-Kyung;Kim, Pyung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.17-29
    • /
    • 2012
  • In recent years, Linked Data that is published under an open license shows increased growth rate and comes into the spotlight due to its interoperability and openness especially in government of developed countries. However there are relatively few out-links compared with its entire number of links and most of links refer a few hub dataset. These occur because of absence of technology that identifies entities in Linked data. In this paper, we present an improved author entity resolution method that using representative properties. To solve problems of previous methods that utilizes relation with other entities(owl:sameAs, owl:differentFrom and so on) or depends on Curation, we design and evaluate an automated realtime resolution process based on multi-ontologies that respects entity's type and its logical characteristics so as to verify entities consistency. The evaluation of author entity resolution shows positive results (The average of K measuring result is 0.8533.) with 29 author information that has obtained confirmation.

A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia (위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법)

  • Lee, Hokyung;An, Jaehyun;Yoon, Jeongmin;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.813-821
    • /
    • 2017
  • Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.

Korean Relation Extraction Using Pre-Trained Language Model and GCN (사전학습 언어모델과 GCN을 이용한 한국어 관계 추출)

  • Je-seung Lee;Jae-hoon Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.379-384
    • /
    • 2022
  • 관계 추출은 두 개체 간의 관계를 식별하는 작업이며, 비정형 텍스트를 구조화시키는 역할을 하는 작업 중 하나이다. 현재 관계 추출에서 다양한 모델에 대한 연구들이 진행되고 있지만, 한국어 관계 추출 모델에 대한 연구는 영어에 비해 부족하다. 따라서 본 논문에서는 NE(Named Entity)태그 정보가 반영된 TEM(Typed Entity Marker)과 의존 구문 그래프를 이용한 한국어 관계 추출 모델을 제안한다. 모델의 학습과 평가 말뭉치는 KLUE에서 제공하는 관계 추출 학습 말뭉치를 사용하였다. 실험 결과 제안 모델이 68.57%의 F1 점수로 실험 모델 중 가장 높은 성능을 보여 NE태그와 구문 정보가 관계 추출 성능을 향상시킬 수 있음을 보였다.

  • PDF

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this paper, we propose a method to build a knowledge base based on natural language processing for intelligent battlefield awareness service. The current command and control system manages and utilizes the collected battlefield information and tactical data at a basic level such as registration, storage, and sharing, and information fusion and situation analysis by an analyst is performed. This is an analyst's temporal constraints and cognitive limitations, and generally only one interpretation is drawn, and biased thinking can be reflected. Therefore, it is essential to aware the battlefield situation of the command and control system and to establish the intellignet decision support system. To do this, it is necessary to build a knowledge base specialized in the command and control system and develop intelligent battlefield awareness services based on it. In this paper, among the entity names suggested in the exobrain corpus, which is the private data, the top 250 types of meaningful names were applied and the weapon system entity type was additionally identified to properly represent battlefield information. Based on this, we proposed a way to build a battlefield-aware knowledge base through mention extraction, cross-reference resolution, and relationship extraction.

On Word Embedding Models and Parameters Optimized for Korean (한국어에 적합한 단어 임베딩 모델 및 파라미터 튜닝에 관한 연구)

  • Choi, Sanghyuk;Seol, Jinseok;Lee, Sang-goo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.252-256
    • /
    • 2016
  • 본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.

  • PDF