• Title/Summary/Keyword: 개체군 변환 유전자 알고리즘

Search Result 4, Processing Time 0.019 seconds

Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS (GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택)

  • Lee, Hee-Sung;Lee, Jae-Hun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.871-875
    • /
    • 2008
  • This paper deals with the feature selection for multiple k-nearest neighbor (k-NN) classifiers using Genetic Algorithm with Varying reputation Size (GAVaPS). Because we use multiple k-NN classifiers, the feature selection problem for them is vary hard and has large search region. To solve this problem, we employ the GAVaPS which outperforms comparison with simple genetic algorithm (SGA). Further, we propose the efficient combining method for multiple k-NN classifiers using GAVaPS. Experiments are performed to demonstrate the efficiency of the proposed method.

A Study on a New Lifetime allocation Method of Genetic Algorithm with Varying Population Size (개체군 변환 유전자 알고리즘의 새로운 수명 할당 방식에 관한 연구)

  • Kwon, Key-Ho
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.1
    • /
    • pp.66-72
    • /
    • 1999
  • In this paper, we suggest a new lifetime allocation method of genetic algorithm with varying population size. This method can control the size of the population according to the fitness values. The population size is stabilized near the neighbourhood of the optimal value. We used the diploidy method in the coding of the chromosomes. Several simulations confirm that the new allocation method can control the size of the population.

  • PDF

Detection of Pupil using Template Matching Based on Genetic Algorithm in Facial Images (얼굴 영상에서 유전자 알고리즘 기반 형판정합을 이용한 눈동자 검출)

  • Lee, Chan-Hee;Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1429-1436
    • /
    • 2009
  • In this paper, we propose a robust eye detection method using template matching based on genetic algorithm in the single facial image. The previous works for detecting pupil using genetic algorithm had a problem that the detection accuracy is influnced much by the initial population for it's random value. Therefore, their detection result is not consistent. In order to overcome this point we extract local minima in the facial image and generate initial populations using ones that have high fitness with a template. Each chromosome consists of geometrical informations for the template image. Eye position is detected by template matching. Experiment results verify that the proposed eye detection method improve the precision rate and high accuracy in the single facial image.

Detection of Pupils using Genetic Algorithm in face Images (얼굴 영상에서 유전자 알고리즘을 이용한 눈동자 검출)

  • Lee, Chan-Hee;Sin, Sang-Ho;Woo, Young-Woon;Jang, Kyung-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.444-447
    • /
    • 2008
  • 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태 변화가 있어 입력 영상마다 대표 특징을 정확히 찾는 것은 어려운 문제이다. 얼굴의 많은 특징 점 중에서 눈동자 부분은 얼굴 인식 등 다양한 부분에 있어서 얼굴 영역의 특징 점으로 가장 많이 이용되는 특징 점들 중 하나이다. 본 논문에서는 다양한 조명하에서의 단일 얼굴 영상에 대해 유전자 알고리즘과 템플릿 정합을 이용하여 빠르게 눈을 검출하는 방법을 제안한다. 조명과 배경에 강건한 검출 성능을 얻기 위해 눈동자 후보점을 찾아서 초기 개체군 생성에 이용하였으며, 각각의 개체는 템플릿의 기하학적 변환 정보로 구성되어 템플릿 정합에 의해 눈동자가 검출된다.

  • PDF