• Title/Summary/Keyword: 개질촉매

Search Result 298, Processing Time 0.025 seconds

Electrochemical Characteristics of PFO pitch Anode prepared by Chemical Activation for Lithium Ion Battery (리튬이온전지용 화학적 활성화로 제조된 석유계 피치 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.307-312
    • /
    • 2017
  • In this study, the electrochemical performance of surface modified carbon using the PFO (pyrolyzed fuel oil) was investigated by chemical activation with KOH and $K_2CO_3$. PFO was heat treated at $390{\sim}400^{\circ}C$ for 1~3h to prepared the pitch. Three carbon precursors (pitch) prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3h), 4001(at $400^{\circ}C$ for 1h) and 4002 (at $400^{\circ}C$ for 2h). Also, the effect of chemical activation catalysts and mixing time on the development of porosity during carbonization was investigated. The prepared carbon was analyzed by BET and FE-SEM. It was shown that chemical activation with KOH could be successfully used to develop carbon with specific surface area ($3.12m^2/g$) and mean pore size (22 nm). The electrochemical characteristics of modified carbon as the anode were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4002) modified by KOH has better initial capacity (318 mAh/g) than that of other pitch coin cells. Also, this prepared carbon anode appeared a high initial efficiency of 80% and the retention rate capability of 2C/0.1 C was 92%. It is found that modified carbon anode showed improved cycling and rate capacity performance.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Dehydration of D-Xylose into Furfural Using Propylsulfonic Acid Modified Mesoporous Silica (황산 표면개질 메조다공 실리카를 이용한 푸르푸랄 제조에 관한 연구)

  • Kim, Eun-Gyu;Kim, Saet-Byul;Park, Eun-Duck;Kim, Sang-Wook
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.95-102
    • /
    • 2010
  • Sulfonic acid (-SO3H) functionalized mesoporous silica containing HMS, SBA 15(S15), MCM 41(M41) were synthesized by post-synthesis and co-condensation method. Their catalytic performance is tested by dehydration reaction of D-xylose to furfural. As a result, good conversion and selectivity was obtained using water as an environmentally friendly solvent. Additionally, increased amounts of sulfuric acid in catalysts resulted in improved conversion of D-xylose. All of the acid-functionalized mesoporous silica showed higher selectivity than other solid acids such as ${\gamma}-Al_{2}O_{3}$ and zeolite.

Phosphorus Modified Co/Al2O3 Fischer-Tropsch Catalyst for a Slurry Phase CSTR with Enhanced Hydrothermal and Mechanical Stability (수열특성 및 기계적 안정성의 개선으로 슬러리상 CSTR에 적합한 P 첨가 알루미나 기반의 Fischer-Tropsch 합성용 코발트 촉매)

  • Jung, Gyu-In;Ha, Kyoung-Su;Park, Seon-Ju;Kim, Du-Eil;Woo, Min-Hee;Jun, Ki-Won;Bae, Jong-Wook;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Phosphorus was incorporated into Co/$Al_2O_3$ catalyst for FTS by impregnating an acidic precursor, phosphoric acid, in ${\gamma}-Al_2O_3$ support to improve the mechanical strength, the hydrothermal stability of the catalyst particle, and the catalytic performance as well. Surface characterization techniques such as FT-IR revealed that $AlPO_4$ phase was generated on the surface of the P-modified catalyst. The addition of phosphorus was found to alleviate the interaction between cobalt and alumina surface, and to increase reducibility of catalyst. The catalytic activity such as $C_{5+}$ productivity and turnover frequency (TOF) was calculated to evaluate catalytic performance. The influence of calcination temperature of the $Al_2O_3$ containing 2 wt.% P on the catalytic performance was also investigated. Through hydrothermal stability test and XRD analysis, the P-modified catalyst had strong resistant to the pressurized and hot $H_2O$. The mechanical strength of the P-modified catalyst was also examined through an in-house fluidized-bed vessel, and it was found that the catalyst fragmentation could be successfully suppressed with P. Taken as a whole, the best performance was shown to be at 1~2 wt.% P in alumina and at the calcination temperature of $500^{\circ}C$.

Benzyl Alcohol Oxidation over H5PMo10V2O40 Catalyst Chemically Immobilized on Sulfur-containing Mesoporous Carbon (황이 포함된 중형기공성 탄소에 화학적으로 고정화된 H5PMo10V2O40 촉매 상에서 Benzyl Alcohol 산화반응)

  • Gim, Min Yeong;Kang, Tae Hun;Choi, Jung Ho;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.419-424
    • /
    • 2016
  • $H_5PMo_{10}V_2O_{40}$ ($PMo_{10}V_2$) catalyst chemically immobilized on sulfur-containing mesoporous carbon (S-MC) was prepared, and it was applied to the benzyl alcohol oxidation reaction. S-MC was synthesized by a templating method using SBA-15 and p-toluenesulfonic acid as a templating agent and a carbon precursor, respectively. S-MC was then modified to have a positive charge, and thus, to provide sites for the immobilization of $PMo_{10}V_2$. By taking advantage of the overall negative charge of $[PMo_{10}V_2O4_{40}]^{5-}$, $PMo_{10}V_2$ catalyst was immobilized on the S-MC support as a charge matching component. It was revealed that $PMo_{10}V_2$ species were finely and molecularly dispersed on the S-MC via chemical immobilization. In the vapor-phase oxidation of benzyl alcohol, $PMo_{10}V_2$/S-MC catalyst showed higher conversion of benzyl alcohol and higher yield for benzaldehyde and benzoic acid than unsupported $PMo_{10}V_2$ catalyst. The enhanced catalytic performance of $PMo_{10}V_2$/S-MC was due to fine dispersion of $PMo_{10}V_2$ species on the S-MC via chemical immobilization.

Steam reforming of biomass tar over Ni/Ru-x/Al2O3 catalysts (Ni/Ru-x/Al2O3 촉매를 이용한 바이오매스 타르 개질)

  • Yoon, Sang Jun;Oh, Kun Woong;Park, Seo Yoon;Kim, Yong Gu;Seo, Myung Won;Ra, Ho Won;Lee, Jae-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.355-356
    • /
    • 2014
  • Catalytic steam reforming of tar produced from biomass gasification was conducted using several Ni-based catalysts. K and Mn were used as a promoter over $Ni/Ru/Al_2O_3$ catalyst. The pellet and monolith type catalysts were prepared and applied to lab and bench-scale biomass gasification system. The $Ni/Ru-K/Al_2O_3$ catalyst shown higher performance than $Ni/Ru-Mn/Al_2O_3$ catalyst at low temperature range.

  • PDF

Cu/ZnO sorbents for the hydrogen station (수소스테이션을 위한 Cu/ZnO 계 탈황제)

  • Jun, ki-Won;Bae, Jong-Wook;Kang, Suk-Hwan;Yoon, Young-Seek;Kim, Myung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.344-347
    • /
    • 2006
  • 탄화수소 연료(LNG, LPG)를 개질하여 수소를 제조하는 연료 처리 공정 중, 탈황 기술은 촉매의 활성저하 및 전극의 피독을 방지하기 위한 필수 기술이다. 본 연구에서는 도시가스 및 액화석유 가스용 부취제로 사용되는 유기 황화합물(,DMS, THT, TBM)을 제거하기 위한 탈황제로서 Cu/ZnO계 흡착제를 개발하였다. 공침법을 이용하여 흡착제를 제조하여 각 부취제별로 상온 및 고온에서의 흡착탈황 성능을 조사하였으며 또한, 이의 특성분석을 행하였다. $Cu/ZnO/Al_2O_3$ 탈황제는 메탄으로부터 고온에서 TH, DMS, TBM+THT 등의 황화합물들을 매우 효과적으로 제거할 수 있었다. 특히, TBM+THT의 혼합가스에서 TBM에 대해 선택적인 흡착을 보였다. THT 흡착에서 흡착온도가 $300^{\circ}C$ 이상에서는, 흡착과정 동안 황의 상호작용으로 인해 금속황화물이 생성되었다.

  • PDF

Steam Reforming of Biogas on Nickel Fiber Mat Catalysts (니켈 섬유 매트 촉매를 사용한 바이오가스 수증기개질 반응)

  • Bui, Quynh Thi Phuong;Kim, Yong-Min;Yoon, Chang-Won;Nam, Suk-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.252-258
    • /
    • 2011
  • Nickel fiber mat was investigated as a potential structured catalyst for steam reforming of biogas in the temperature range of $600-700^{\circ}C$. The activity of as-received catalyst was very low owing to the smooth surface of fibers. Pretreatment of the catalyst by oxidation followed by reduction under methane partial oxidation condition significantly improved the catalytic activity, although degradation of the activity was found during the reaction due to oxidation and sintering. This deactivation was retarded by supplying additional hydrogen in the inlet gases or by coating $CeO_2$ over the catalyst surfaces.

Modification of Cotton Fibers via In-Situ Polymerization of Silane Monomers (Sliane 중합을 통한 면섬유의 개질에 관한 연구)

  • 오경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.3
    • /
    • pp.410-418
    • /
    • 1994
  • 다양한 유기관능기를 가진 Silane가요제의 기능 양면성과 독특한 화학적 구조는 이들이 면섬유의 물성을 향상시키기 위한 in-situ 중합 및 가교처리의 단량체로 사용될 수 있는 가능성을 시사하므로, 본 연구에서는 이를 위한 기초 실험으로 수용액 상의 silane 단량체의 거동과 in-situ중합의 가능성을 조사하였다. 관능기를 달리하는 methyltriethoxysilane (MES), vinyltriethoxysilane (VES), vinyltriacetoxysilane (VAS)과 epoxy (glycidoxy) propyltrimethoxysilane (EMS) 등이 silane단량체로 선택되었다. Silane수용액의 안정성과 용해도는 단량체의 농도가 증가함에 따라 감소하였으며, pH에 의해서도 크게 영향을 받아 PH 3과 4.5사이에서 가장 안정함을 나타내었다. 10분간의 중기 고착과정에 의해서 충분한 양의 단량체가 면섬유 안으로 확산되었으며, 섬유의 방추성은 반응성이 높은 organotin촉매제를 사용하여 열처리한 후 증가되었다.

  • PDF

NUMERICAL STUDY OF HEAT TRANSFER AND FUEL CONVERSION FOR MCFC'S PRECONVERTER (MCFC 프리컨버터 촉매의 열전도특성과 연료전환율 해석)

  • Byun, D.H.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.112-116
    • /
    • 2011
  • In this paper, a preconverter of MCFC for an emergence electric power supplier is numerically simulated to increase the hydrogen production from natural gas (methane). Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). To get 10% fuel conversion rate in preconverter. the required external heat flux is supplied from outer wall of preconverter. The calculated results show that very nonuniform temperature distribution and chemical reaction happen near the wall of preconverter. These phenomena can be explained by the low heat conductivity of porous catalyst and the endothermic reforming reaction.

  • PDF