• Title/Summary/Keyword: 개벌

Search Result 51, Processing Time 0.03 seconds

Change of Butterfly Communities After Clear Cutting in Gwangneung Forest (광릉숲에서 개벌 후 나비군집의 변화)

  • Lee, Cheol Min;Kwon, Tae-Sung
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.347-354
    • /
    • 2014
  • This study was carried out to clarify the change of butterfly community after clear cutting. Butterfly survey was conducted in clear cutting area, forest road, and forest using line transect method from May to November in 2011. A total of 32 species and 398 individuals of butterflies were observed. Abundance of food niche breadth and habitat type was significantly higher in clear cutting area than in forest. Estimated species richness and species diversity were significantly higher in clear cutting area than in forest. In clear cutting area, Leptidea amurensis and Argynnis niobe, vulnerable species, were abundant. This result suggests that grasslands formed by clear cutting play an important role to increase butterfly diversity in forest ecosystem.

Seed Inflow Characteristics of the Korean Red Pine according to Harvest Type in Natural Regeneration Forests (소나무 천연갱신지의 목재수확 유형별 종자 유입 특성)

  • Junmo Chung;Sang Tae Lee;Hyun Seop Kim;Sang Hoon Chung
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.331-339
    • /
    • 2023
  • This study was conducted to identify seed inflow characteristics according to harvest typeand to provide basic data for developing a regeneration technology for secondary growth forests in Korean red pine (Pinus densiflora) succession forest formation by natural regeneration. Experimental sites were established by applying seed tree (single and group) and clear-cutting methods (10- 20- 30-m strip and 20- 30- 40-m patch). The seed inflow characteristics of the natural regeneration site were analyzed for 6 years from 2014. Most seeds were flowed to the regeneration stand from October to November. In years with good seed fructification, more than 80% were flowed in October. The average annual seed inflow by harvest type was highest in the seed tree area (296,000 seeds/ha/yr), followed by the 20-m patch clear-cutting area (291,000 seeds/ha/yr) and 10-m strip clear-cutting area (281,000 seeds/ha/yr). The distribution uniformity of seed inflow according to treatment was analyzed in the order of the 20-m strip clear-cutting area (52.2), 20-m patch clear-cutting area (52.9), and 10-m strip clear-cutting area (56.1). As a result, the 10-m strip and 20-m patch clear-cutting areas with relatively small harvest areas showed high seed inflow and distribution uniformity.

A Change of Turbidity on Forest Stands by Rainfall Characteristics in Small Watershed (산지소유역에 있어서 강우특성에 따른 임분별 탁도 변화)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.381-386
    • /
    • 2012
  • This study was carried out to clarify the turbidity change on three stands (Castanea crenata, Pinus densiflora and Plantation Land) by rainfall characteristics in small watershed. The change of turbidity showed in order of plantation land, Castanea stand and Pinus stand. The linear equations models between turbidity and rainfall intensity were able to account for 91% in Castanea stand, 80% in Pinus stand and 71% in plantation land. The linear equations models between turbidity and duration of rainfall were able to account for about 0-1% in three stands. The linear equations models between turbidity and preceding dry days were able to account for about 30% in three stands. The linear equations models between turbidity and accumulative rainfall were able to account for about 6-22% in three stands. The results indicates that soil runoff by land use and development of forest area could be applied to the mitigation measures such as afforestation and erosion check dam for erosion control and water quality management in small watershed.

Variation of Suspended Solid Concentration, Electrical Conductivity and pH of Stream Water in the Regrowth and Rehabilitation Forested Catchments, South Korea (개벌 재생림유역과 사방지 혼효림유역에서 강수시 계류수의 부유물질농도 및 전기전도도와 pH 변화)

  • Jun, Jaehong;Kim, Kyongha;Yoo, Jaeyun;Choi, Hyung Tae;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • This study was conducted to investigate how the qualities of the stream water vary during the event in the regrowth and rehabilitation catchments in Yangju, Gyeonggido, from June to September 2005. During the observation periods, we sampled the stream water continuously by an auto-sampler (ISCO, 6712FR). The sampled waters were analyzed for suspended solid concentration, electrical conductivity and pH. The suspended solid concentration during the event increased concurrently with the stream flow. The peak of suspended solid concentration usually precedes the peak flow. The maximum value of suspended solid concentration was 420.89 mg/l in the event 1 at the regrowth catchment. Among the events simultaneously sampled at both catchments, the maximum values of suspended solid concentration were 212.8 mg/l and 58.24 mg/l in the event 3 at the regrowth and rehabilitation catchment respectively. The maximum value of EC in each event showed in the early stage of rising limb. EC decreased during the rising limb, and then showed minimum value at peak flow. EC gradually increased to pre-event value after minimum one. pH varied in similar pattern with EC. The maximum value of suspended solid concentration during each event was 2.8 to 4.3 times higher at the regrowth catchment than at the rehabilitation catchment. And the EC during each event was higher at the regrowth catchment than at the rehabilitation catchment. This results indicate that a disturbed forest soil during clear cutting at regrowth catchment still has been unstable.

Clearcutting Effects on Soil Nitrogen Mineralization in Quercus rubra and Pinus resinosa Stands (루브라참나무림과 레시노사소나무림의 토양 질소 무기화에 있어서 개벌의 영향)

  • Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.198-206
    • /
    • 1995
  • The objective of this study was to determine the rate of nitrogen mineralization at clearcut and uncut in oak(Quercus rubra L.) and pine(Pinus resinosa Ait.) stands. The study sites were located in northern Lower Michigan, U.S.A. Nitrogen mineralization rates in the top 15cm of mineral soil were examined during the 1991 and 1992 growing seasons(May-October) using an in situ buried tag technique. diet nitrogen mineralization in oak stands over the course of both growing seasons was 67kg/ha in the clearcut and 30kg/ha in the uncut stands. In contrast, net nitrogen mineralization in pine stands was 27kg/ha and 13kg/ha for the same treatments. Total net nitrogen mineralization rates were always higher in oak stands than in pine stands. Extractable $NO_3^-$ before and after one month soil incubation in both oak and pine stands was generally not detectable in the uncut stands, but in the pine clearcut treatment(nitrification over the course of both growing seasons : 3.3kg/ha). The results indicated that : 1) substantial increases in the amount of available soil nitrogen occurred following clearcuts in both stands : and 2) the loin rates of nitrification may be an important mechanism for retention of nitrogen in both oak and pine stands.

  • PDF

Natural Regeneration of Tree Species after Clear-cutting in a Coniferous Plantation (침엽수(針葉樹) 인공조림지(人工造林地) 개벌(皆伐) 후의 교목류(喬木類) 천연갱신(天然更新))

  • Sin, Chang-Seop;Kim, Hong-Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.4
    • /
    • pp.501-506
    • /
    • 2006
  • To study the regeneration process of tree species after clear cutting, we investigated the density of seedling occurred after 1 year in the coniferous forest of Sikotuko Hokkaido, northern Japan that was clearcut after windthrow damage due to typhoon. As the results, 25 species of tree seedlings were growing and the density of seedlings and sprouts was $9.8trees/m^2$ ($1.25tres/m^2{\sim}54.44trees/m^2$) in the area of clear cutting. The 87% ($8.6/m^2$) of all seedlings was current seedlings and non-animal dispersal seedlings (average density $7.2tree/m^2$) were about 5 times more than animal-dispersal seedlings ($1.4tree/m^2$). The seedling density was beyond $6tree/m^2$ within 10m and $2{\sim}9tree/m^2$ in 150~250m from a natural forest. Number of non-animal dispersal seedlings were decreased along the distance from a natural forest but there was not such a tendency in animal dispersal seedlings. The variation in seedling density was higher in non-animal dispersal seedling than in animal dispersal seedling. In natural regeneration of tree species after clear-cutting, the possibility that pioneer species like Betula spp. etc. will be composed of the major species is high. Therefore, in order to maintain the species diversity, the nurture work for reducing competition among the individuals is necessary.

A Change of Stream Water Quality by Forest Types (임상에 따른 계류수의 수질변화에 관한 연구)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.142-148
    • /
    • 2011
  • This study was carried out to clarify the change characteristics of stream water quality by type of forest from June to August, 2009 in three stands (Castanea crenata, Pinus densiflora and Plantation Land) of Samgye-ri Naedong-myeon Jinju-si Gyeongsangnam-do. The pH of stream water in three stands was highest in Pinus densiflora (pH 7.18) followed by Castanea crenata (pH 6.90) and Plantation land (pH 6.90) while the electrical conductivity of stream water was highest in Plantation land followed by Castanea crenata stand and Pinus densiflora stand was the lowest. Cations contents of stream water in three stands were high in order of $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $K^{+}$, and $NH_{4}{^{+}}$. But anions of stream water in Castanea crenata stand and Pinus densiflora stand were high in order of $SO_{4}{^{2-}}$, $Cl^{-}$ and $NO_{3}{^{-}}$ while those of stream water in Plantation land were high in order of $SO_{4}{^{2-}}$, $NO_{3}{^{-}}$ and $C\lambda^{-}$. The stream water in three stands was significant at pH, EC, $NO{^{3-}}$, $Ca^{2+}$, $Mg^{2+}$, $Na^{+}$, $Cl^{-}$, TNU and Color by duncan test. These results indicate that quality of stream water have a difference among three stands. The level of pH, $NH_{4}{^{+}}$, $Cl^{-}$, $SO_{4}{^{2-}}$ and $NO_{3}{^{-}}$ of stream water in three stands were within the domestic use standard for drinking water. but turbidity and color of stream water were more than that of domestic use standard for drinking water. Therefore, non-point sources like urban forest watersheds which are soil erosion and fertilizer application lands should be taken to the appropriate mitigation measures if they are to be used as source of drinking water.

Effect of Forest Land Use on Soil Runoff in Small Watershed (산지소유역에서 임지이용이 토사유출에 미치는 영향)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.220-225
    • /
    • 2012
  • This study was carried out to clarify the impact of land use (Castanea crenata, Pinus densiflora and Plantation Land) on soil runoff in small watershed. The soil runoff showed in order of plantation land, Castanea stand and Pinus stand. The resulting models in linear equations of three stands were able to account for 70%, 60% and 60% respectively. The relationship between soil runoff and forest environmental factors was a positive correlation at 1% level with slope, forest type, soil hardness, watershed area, stream length and at 5% level with accumulative rainfall, but was negative correlation at 1% level with coverage. The main factors that affected soil runoff in small watershed showed in order of coverage, accumulative rainfall and stand type. In the stepwise regression between soil runoff and forest environmental factors, the estimation equation is as follow; Y = 31.250 - 1.140(Coverage) + 0.413(Accumulative rainfall) + 20.829(Forest type). The results indicates that dangerous areas of landslide and soil runoff by land use could be applied to the mitigation measures such as afforestation, erosion check dam and revetment for erosion control and water quality management in small watershed.

Effects of Forest Environmental Changes on Soil Characteristics by Forest Fire (산화에 의한 산림환경변화가 토양의 특성에 미치는 영향)

  • Nam, Yi;Min, Ell-Sik;Chang, Kwan-Soon;Park, Kwan-Soo;Lee, Yoon-Won
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 1998
  • This research has been made for influence of forest environmental changes, such as tree-clearcutting affecting to soil chemical and physical properties, on water storage capacity at forest fire land in Keumsan, Chungnam. The analyzed factors were bulk density, porosity, field moisture saturated hydraulic conductivity air permeability and organic matter content, Field moisture saturated hydraulic conductivity and air permeability at uncutting sites were higher than those at clearcutting sites, especially the most differences were appeared at lower slope. After 2 years passed since forest fire, the most changeable parts of soil characteristics were 5-l5cm depth below soil surface. Total Porosity, coarse pore and fine pore at uncutting sites were higher than those at clearcutting sites. Also, as soil depth increased, total porosity and coarse pore were decreased. Bulk density at uncutting sites was lower than that at clearcutting sites, and was decreased as soil depth increased. The order of the change trend in field moisture saturated hydraulic conductivity, air permeability and porosity was slope lower>middle>upper. Organic matter content at uncutting sites were higher than those at clearcutting sites, and decreased as soil depth increased. As soil depth increased, bulk density had the positive correlation, in other hand, porosity, coarse pore, field moisture saturated hydraulic conductivity, air permeability and organic matter content had the negative correlation. It was concluded that forest environmental changes by forest fire degrade soil physical and chemical properties.

  • PDF