• Title/Summary/Keyword: 개미집단최적화

Search Result 30, Processing Time 0.03 seconds

A Routing Algorithm for Wireless Sensor Networks with Ant Colony Optimization (개미 집단 최적화를 이용한 무선 센서 네트워크의 라우팅 알고리즘)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.131-137
    • /
    • 2007
  • Recently, Ant Colony Optimization (ACO) is emerged as a simple yet powerful optimization algorithm for routing and load-balancing of both wired and wireless networks. However, there are few researches trying to adopt ACO to enhance routing performance in WSN owing to difficulties in applying ACO to WSN because of stagnation effect. In this paper, we propose an energy-efficient path selection algorithm based on ACO for WSN. The algorithm is not by simply applying ACO to routing algorithm but by introducing a mechanism to alleviate the influence of stagnation. By the simulation result, the proposed algorithm shows better performance in data propagation delay and energy efficiency over Directed Diffusion which is one of the outstanding schemes in multi-hop flat routing protocols for WSN. Moreover, we checked that the proposed algorithm is able to mitigate stagnation effect than simple ACO adoption to WSN.

  • PDF

Multi Colony Ant Model using Positive.Negative Interaction between Colonies (집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.751-756
    • /
    • 2003
  • Ant Colony Optimization (ACO) is new meta heuristics method to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was firstly proposed for tackling the well known Traveling Salesman Problem (TSP) . In this paper, we introduce Multi Colony Ant Model that achieve positive interaction and negative interaction through Intensification and Diversification to improve original ACS performance. This algorithm is a method to solve problem through interaction between ACS groups that consist of some agent colonies to solve TSP problem. In this paper, we apply this proposed method to TSP problem and evaluates previous method and comparison for the performance and we wish to certify that qualitative level of problem solution is excellent.

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

Balance between Intensification and Diversification in Ant Colony Optimization (개미 집단 최적화에서 강화와 다양화의 조화)

  • Lee, Seung-Gwan;Choi, Jin-Hyuk
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2011
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. In this paper, we deal with the performance improvement techniques through balance the intensification and diversification in Ant Colony System(ACS) which is one of Ant Colony Optimization(ACO). In this paper, we propose the hybrid searching method between intensification strategy and diversification strategy. First, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. And then we consider the overlapping edge of the global best path of the previous and the current, and, to enhance the pheromone for the overlapping edges increases the probability that the optimal path is configured. Finally, the performance of Best and Average-Best of proposed algorithm outperforms ACS-3-opt, ACS-Subpath, ACS-Iter and ACS-Global-Ovelap algorithms.

Evolvable Hardware Using Ant Colony System (개미 집단 시스템을 이용한 진화 하드웨어)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.244-246
    • /
    • 2002
  • 진화 하드웨어(Evolvable Hardware)는 환경 적응력이 강하고 최적의 상태를 유연하게 유지하는 하드웨어 설계 기법이나 회로가 복잡해질수록 진화가 어려워지는 문제로 인해 활용이 늦어지고 있다. 본 논문에서는 이를 해결하기 위한 많은 연구 중 회로 진화 과정 분석을 위한 방법으로 개미집단 시스템을 제안한다. 경로 최적화 알고리즘인 개미집단 시스템을 적절히 변형하여 진화 하드웨어에 적용시키는 방법을 제안하고 이를 실험으로 확인하였으며, 실험 결과 하드웨어의 진화 과정을 관찰할 수 있었고, 목표 하드웨어의 해공간 특성이 페로몬으로 분포하고 있음도 관찰할 수 있었다.

  • PDF

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

An Ant-based Routing Method using Enhanced Path Maintenance for MANETs (MANET에서 향상된 경로 관리를 사용한 개미 기반 라우팅 방안)

  • Woo, Mi-Ae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1281-1286
    • /
    • 2010
  • Ant-based routing methods belong to a class of ant colony optimization algorithms which apply the behavior of ants in nature to routing mechanism. Since the topology of mobile ad-hoc network(MANET) changes dynamically, it is needed to establish paths based on the local information. Subsequently, it is known that routing in MANET is one of applications of ant colony optimization. In this paper, we propose a routing method, namely EPMAR, which enhances SIR in terms of route selection method and the process upon link failure. The performance of the proposed method is compared with those of AntHocNet and SIR. Based on he analysis, it is proved that the proposed method provided higher packet delivery ratio and less critical link failure than AntHocNet and SIR.

Compact elitist Ant Optimization (콤팩트 엘리트 개미 최적화)

  • Cho, Jin-Sun;Chang, Hyeong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.365-370
    • /
    • 2008
  • 본 논문에서는 개미 집단 최적화(Ant Colony Optimization, ACO)의 시간적 공간적 효율성을 향상시키기 위해 ACO에 엘리트 콤팩트 유전 알고리즘(Elitist compact Genetic Algorithms, elitist cGAs)의 아이디어를 적용한 콤팩트 개미 최적화(Compact elitist Ant Optimization, CAO)를 제안한다. CAO는 elitist cGAs에서 각 세대마다 염색체의 수를 둘로 고정하고 우월한 염색체를 유지하여 최적의 해를 찾는 방식을 적용하여 개미의 수를 하나로 고정하고 전이 확률식과 페로몬 갱신 규칙을 변형하고 특정 문제에 적용할 수 있는 타부 규칙을 추가한 알고리즘이다. 이 알고리즘의 공간 효율성이 ACO보다 좋다는 것을 증명하고 스테이너 트리 문제(Steiner Tree Problem)에 적용하여 제안된 알고리즘의 시간 효율성이 ACO보다 좋다는 것을 보인다.

  • PDF

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

A Reinforcement Loaming Method using TD-Error in Ant Colony System (개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.77-82
    • /
    • 2004
  • Reinforcement learning takes reward about selecting action when agent chooses some action and did state transition in Present state. this can be the important subject in reinforcement learning as temporal-credit assignment problems. In this paper, by new meta heuristic method to solve hard combinational optimization problem, examine Ant-Q learning method that is proposed to solve Traveling Salesman Problem (TSP) to approach that is based for population that use positive feedback as well as greedy search. And, suggest Ant-TD reinforcement learning method that apply state transition through diversification strategy to this method and TD-error. We can show through experiments that the reinforcement learning method proposed in this Paper can find out an optimal solution faster than other reinforcement learning method like ACS and Ant-Q learning.