• Title/Summary/Keyword: 강-열점소성 유한요소법

Search Result 5, Processing Time 0.022 seconds

Analysis of Aluminium Ring Rolling Process Using Thermo-Rigid-Plastic Finite Element Method (강-열점소성 유한요소법을 이용한 알루미늄 링압연 공정 해석)

  • Koo, Sang-Wan;Lee, Jong-Chan;Yun, Su-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.815-822
    • /
    • 2003
  • The ring rolling process involves not only three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece but also heat transfer among workpiece, rolls and environment. In this study, deformation and heat transfer analyses were conducted by using the three-dimensional thermo-rigid-plastic finite element method. Three cases of plain ring rolling process were, respectively, simulated for the predictions of roll forces and the highest temperature zone during the aluminum process that ductile fracture often occurs. In addition, to prevent fishtail phenomena of the ring workpiece, axial rolls were used for this study.

A Study of Finite Element Analysis for Semi-Solid Forging (반용융단조 공정의 유한요소해석에 관한 연구)

  • 이주영;김낙수;김중재
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.159-164
    • /
    • 1997
  • The optimal conditions were investigated in order to manufacture the light automotive body parts using the semi-solid forging process by the finite element nalysis. Considering about macro-segregation cause to difference of relative velocity between solid phase and liquid phase, solidificational phenomenon cause to heat transfer from die and export of the latent heat, so solid fraction updating algorithm can be proposed. The rigid thermo-viscoplastic finite element analysis was carried out according to die temperature with proposed algorithm, so availability of forming part were understood. The finite element program can be used to the analysis of semi solid forging process.

  • PDF

A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling (열간압연시 미세조직 예측을 위한 유한요소 모델)

  • Cho, Hyunjoong;Kim, Naksoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.

A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method (강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구)

  • 윤종훈;김낙수;임용택;이준두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF