• 제목/요약/키워드: 강화 학습

Search Result 1,608, Processing Time 0.027 seconds

Minimize Order Picking Time through Relocation of Products in Warehouse Based on Reinforcement Learning (물품 출고 시간 최소화를 위한 강화학습 기반 적재창고 내 물품 재배치)

  • Kim, Yeojin;Kim, Geuntae;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.90-94
    • /
    • 2022
  • In order to minimize the picking time when the products are released from the warehouse, they should be located close to the exit when the products are released. Currently, the warehouse determines the loading location based on the order of the requirement of products, that is, the frequency of arrival and departure. Items with lower requirement ranks are loaded away from the exit, and items with higher requirement ranks are loaded closer from the exit. This is a case in which the delivery time is faster than the products located near the exit, even if the products are loaded far from the exit due to the low requirement ranking. In this case, there is a problem in that the transit time increases when the product is released. In order to solve the problem, we use the idle time of the stocker in the warehouse to rearrange the products according to the order of delivery time. Temporal difference learning method using Q_learning control, which is one of reinforcement learning types, was used when relocating items. The results of rearranging the products using the reinforcement learning method were compared and analyzed with the results of the existing method.

Development of Humanoid Robot HUMIC and Reinforcement Learning-based Robot Behavior Intelligence using Gazebo Simulator (휴머노이드 로봇 HUMIC 개발 및 Gazebo 시뮬레이터를 이용한 강화학습 기반 로봇 행동 지능 연구)

  • Kim, Young-Gi;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.260-269
    • /
    • 2021
  • To verify performance or conduct experiments using actual robots, a lot of costs are needed such as robot hardware, experimental space, and time. Therefore, a simulation environment is an essential tool in robotics research. In this paper, we develop the HUMIC simulator using ROS and Gazebo. HUMIC is a humanoid robot, which is developed by HCIR Lab., for human-robot interaction and an upper body of HUMIC is similar to humans with a head, body, waist, arms, and hands. The Gazebo is an open-source three-dimensional robot simulator that provides the ability to simulate robots accurately and efficiently along with simulated indoor and outdoor environments. We develop a GUI for users to easily simulate and manipulate the HUMIC simulator. Moreover, we open the developed HUMIC simulator and GUI for other robotics researchers to use. We test the developed HUMIC simulator for object detection and reinforcement learning-based navigation tasks successfully. As a further study, we plan to develop robot behavior intelligence based on reinforcement learning algorithms using the developed simulator, and then apply it to the real robot.

Teaching Religious Language to Nurture Spiritual Development (영적 성숙을 증진하는 종교적 언어의 교육)

  • de Assis, Renee
    • Journal of Christian Education in Korea
    • /
    • v.65
    • /
    • pp.9-27
    • /
    • 2021
  • Religious language learning is crucial for children's spiritual development and how each child is encouraged to speak about the Sacred will drive the capacities for healthily connecting with one another, God, and the nonhuman world. Religious educators have an ethical imperative to teach religion with a commitment to celebrating lived experiences, while resisting dogmatic instruction that stunts linguistic, cognitive, and spiritual development. Cultural influences must encourage approaches that nurture children's wonder and inquiry, by teaching religious language as a tool for meaning-making and expression.

Reward Design of Reinforcement Learning for Development of Smart Control Algorithm (스마트 제어알고리즘 개발을 위한 강화학습 리워드 설계)

  • Kim, Hyun-Su;Yoon, Ki-Yong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • Recently, machine learning is widely used to solve optimization problems in various engineering fields. In this study, machine learning is applied to development of a control algorithm for a smart control device for reduction of seismic responses. For this purpose, Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm. A single degree of freedom (SDOF) structure with a smart tuned mass damper (TMD) was used as an example structure. A smart TMD system was composed of MR (magnetorheological) damper instead of passive damper. Reward design of reinforcement learning mainly affects the control performance of the smart TMD. Various hyper-parameters were investigated to optimize the control performance of DQN-based control algorithm. Usually, decrease of the time step for numerical simulation is desirable to increase the accuracy of simulation results. However, the numerical simulation results presented that decrease of the time step for reward calculation might decrease the control performance of DQN-based control algorithm. Therefore, a proper time step for reward calculation should be selected in a DQN training process.

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Advanced Approach for Performance Improvement of Deep Learningbased BIM Elements Classification Model Using Ensemble Model (딥러닝 기반 BIM 부재 자동분류 학습모델의 성능 향상을 위한 Ensemble 모델 구축에 관한 연구)

  • Kim, Si-Hyun;Lee, Won-Bok;Yu, Young-Su;Koo, Bon-Sang
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.12-25
    • /
    • 2022
  • To increase the usability of Building Information Modeling (BIM) in construction projects, it is critical to ensure the interoperability of data between heterogeneous BIM software. The Industry Foundation Classes (IFC), an international ISO format, has been established for this purpose, but due to its structural complexity, geometric information and properties are not always transmitted correctly. Recently, deep learning approaches have been used to learn the shapes of the BIM elements and thereby verify the mapping between BIM elements and IFC entities. These models performed well for elements with distinct shapes but were limited when their shapes were highly similar. This study proposed a method to improve the performance of the element type classification by using an Ensemble model that leverages not only shapes characteristics but also the relational information between individual BIM elements. The accuracy of the Ensemble model, which merges MVCNN and MLP, was improved 0.03 compared to the existing deep learning model that only learned shape information.

Effective Policy Search Method for Robot Reinforcement Learning with Noisy Reward (노이즈 환경에서 효과적인 로봇 강화 학습의 정책 탐색 방법)

  • Yang, Young-Ha;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Robots are widely used in industries and services. Traditional robots have been used to perform repetitive tasks in a fixed environment, and it is very difficult to solve a problem in which the physical interaction of the surrounding environment or other objects is complicated with the existing control method. Reinforcement learning has been actively studied as a method of machine learning to solve such problems, and provides answers to problems that robots have not solved in the conventional way. Studies on the learning of all physical robots are commonly affected by noise. Complex noises, such as control errors of robots, limitations in performance of measurement equipment, and complexity of physical interactions with surrounding environments and objects, can act as factors that degrade learning. A learning method that works well in a virtual environment may not very effective in a real robot. Therefore, this paper proposes a weighted sum method and a linear regression method as an effective and accurate learning method in a noisy environment. In addition, the bottle flipping was trained on a robot and compared with the existing learning method, the validity of the proposed method was verified.

Reinforcement Learning-based Search Trajectory Generation and Stiffness Tuning for Connector Assembly (커넥터 조립을 위한 강화학습 기반의 탐색 궤적 생성 및 로봇의 임피던스 강성 조절 방법)

  • Kim, Yong-Geon;Na, Minwoo;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2022
  • Since electric connectors such as power connectors have a small assembly tolerance and have a complex shape, the assembly process is performed manually by workers. Especially, it is difficult to overcome the assembly error, and the assembly takes a long time due to the error correction process, which makes it difficult to automate the assembly task. To deal with this problem, a reinforcement learning-based assembly strategy using contact states was proposed to quickly perform the assembly process in an unstructured environment. This method learns to generate a search trajectory to quickly find a hole based on the contact state obtained from the force/torque data. It can also learn the stiffness needed to avoid excessive contact forces during assembly. To verify this proposed method, power connector assembly process was performed 200 times, and it was shown to have an assembly success rate of 100% in a translation error within ±4 mm and a rotation error within ±3.5°. Furthermore, it was verified that the assembly time was about 2.3 sec, including the search time of about 1 sec, which is faster than the previous methods.

A DASH System Using the A3C-based Deep Reinforcement Learning (A3C 기반의 강화학습을 사용한 DASH 시스템)

  • Choi, Minje;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

An Examination of the Course Syllabi related to Data Science at the ALA-accredited Library and Information Science Programs (데이터사이언스 관련 교과목의 강의 계획서 분석: ALA의 인가를 받은 문헌정보학 프로그램을 중심으로)

  • Park, Hyoungjoo
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.119-143
    • /
    • 2022
  • This preliminary study examined the status of data science-related course syllabi in the American Library Association (ALA) accredited Library and Information Science (LIS) programs. The purpose of this study was to explore LIS course syllabi related to data science, such as course title, course description, learning outcomes, and weekly topics. LIS programs offer various topics in data science such as the introduction to data science, data mining, database, data analysis, data visualization, data curation and management, machine learning, metadata, and computer programming. This study contributes to helping instructors develop or revise course materials to improve course competencies related to data science in the ALA-accredited LIS programs.