• Title/Summary/Keyword: 강합성형 철도교

Search Result 4, Processing Time 0.02 seconds

Vibration of Steel Composite Railway Bridges under High Speed Train (고속열차하중 하의 강합성형 철도교의 진동)

  • Chang, Sung Pil;Kwark, Jong Won;Ha, Sang Gil;Kim, Sung Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.577-587
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two I-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs are fully connected with steel girders, the offset between slabs and girders is modeled using constraint equation. The track system is modeled using beams on elastic foundation theory. And, the TGV train model is developed in 2-dimension considering bouncing and pitching motion. And braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies on the variation of natural frequency of bridge, speed parameter, vehicle modeling method, braking action of train, etc are performed.

  • PDF

External Post-tensioning Strengthening of Composite Girder Bridge Using Lateral Distribution of Post-tensioning Force (긴장력 횡분배를 이용한 강합성형교 외부 후 긴장 보강)

  • Park, Young Hoon;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.587-596
    • /
    • 2009
  • This study analyzes the lateral distribution behavior of external post-tensioning force and evaluates the possibility of strengthening the servicing composite girder bridge by adopting the external post-tensioning force to the parts of the bridge girder. From the results of experiments and analyses, it is founded that the composite girder bridge can be strengthened by applying the external post-tensioning force to the parts of the bridge girder. It is also proved that bracing improve the lateral distribution behavior of post-tensioning force. The lateral distribution behavior of post-tensioning force which influenced by stiffness ratio, girder spacing and span length is changed by the bridge type and the location of tensioned girder. From the results of analyses, set up an equation which can predict the lateral distribution behavior of external post-tensioning force and evaluate the rationality.

A Study on the Dynamic Behavior of Steel Composite railway Bridges subject to High Speed Train (고속열차하중 하의 강합성형 철도교의 동적거동에 관한 연구)

  • 장승필;곽종원;하상길;김성일
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.548-555
    • /
    • 1998
  • The influences of high speed train on the dynamic responses of steel composite railway bridges are investigated. The bridge system which has two Ⅰ-girder and several cross beams is modeled with plate and frame elements. With assumption of concrete slabs ate fully connected with steel girders, the offset between slabs and girders is modeled using rigid link. The track system is modeled using beams on elastic foundation theory. And, the TGV train is modeled in 2-dimension considering bouncing and pitching motion. And, braking action of vehicle is considered using speed dependent braking function. To investigate the behavior of bridges due to moving trains, parametric studies are performed.

  • PDF

Resonance Phenomenon according to the relationship between Span Length of the Bridge and Effective Beating Interval of High-Speed Train (교량의 지간장과 고속전철하중 유효타격간격 사이의 관계에 따른 공진현상)

  • 김성일;곽종원;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Resonance of the bridge can be occurred with the coincidence between a natural frequency of the bridge and a crossing frequency of moving loads which is determined from the speed and effective beating interval of the vehicle. In case of the railway bridge, the effective beating interval of the vehicle is fixed under the passage of specific trains. In the present study, resonance and cancellation of the bridge subjected to moving high-speed train are analyzed with the variations of span length. A steel-concrete composite railway bridge is idealized by the combinations of plate elements and space frame elements. High-speed train is idealized with moving constant forces and a 3-dimensional full modelling. From analyzing dynamic responses of D.M.F of vertical displacement, maximum vertical acceleration of the slab, and end rotation according to the variations of span length of the bridge, design criteria of span length of the bridge which satisfies dynamic safety is discussed.

  • PDF