• Title/Summary/Keyword: 강인 필터

Search Result 582, Processing Time 0.027 seconds

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

A Study on the Mixing of Pulverization Matters when the Contrast Medium is connected to the Automatic Injection Device using the Syringe Connector (Syringe Connector를 이용하여 조영제를 자동 주입장치에 연결 시 분쇄물 혼입에 관한 연구)

  • Kim, Hyeon ju;Kim, Ji eun;Han, Yu bean;Choi, Seung hyun;Kang, Yun ki;Jung, Yu jin;Jung, Min young;Lee, Hoo min
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.777-783
    • /
    • 2018
  • The purpose of this study was to investigate the degree of tearing of the rubber when the spike of the syringe connector was connected to the bottle of the contrast medium composed of the rubber compound type and to investigate the presence of the synthetic rubber due to tearing and grinding and the size of the pulverized product when the pulverized matters rubber was detected. As a result, in the case of tearing degree, the front side of the first contact with the end of the syringe connector was torn more than the back side by about $3.14{\pm}0.04mm$, and the pulverized matters was detected on average 7 to 15 on the 10 contrast mediums. The average particle size was measured to be about $7.89{\pm}0.31{\mu}m$. In addition, it is necessary to develop a micro_filter type automatic injection system for blocking off the pulverized matters as well as additional experiments through various experiments and analysis methods, and it is considered that interest of related organizations will be needed in preparation of fatal accidents when pulverized matters is introduced.

High Purification of Hg2Br2 Powder for Acousto-Optic Tunable Filters Utilizing a PVT Process (PVT공정을 이용한 음향광학 가변 필터용 Hg2Br2 파우더의 고순도 정제)

  • Kim, Tae Hyeon;Lee, Hee Tae;Kwon, In Hoi;Kang, Young-Min;Woo, Shi-Gwan;Jang, Gun-Eik;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.732-737
    • /
    • 2018
  • We develop a purification process of $Hg_2Br_2$ raw powders using a physical vapor transport(PVT) process, which is essential for the fabrication of a high performance acousto-optic tunable filter(AOTF) module. Specifically, we characterize and compare three $Hg_2Br_2$ powders: $Hg_2Br_2$ raw powder, $Hg_2Br_2$ powder purified under pumping conditions, and $Hg_2Br_2$ powder purified under vacuum sealing. Before and after purification, we characterize the powder samples through X-ray diffraction and X-ray photoelectron spectroscopy. The corresponding results indicate that physical properties of the $Hg_2Br_2$ compound are not damaged even after the purification process. The impurities and concentration in the purified $Hg_2Br_2$ powder are evaluated by inductively coupled plasma-mass spectroscopy. Notably, compared to the sample purified under pumping conditions, the purification process under vacuum sealing results in a higher purity $Hg_2Br_2$ (99.999 %). In addition, when the second vacuum sealing purification process is performed, the remaining impurities are almost removed, giving rise to $Hg_2Br_2$ with ultra-high purity. This high purification process might be possible due to independent control of impurities and $Hg_2Br_2$ materials under the optimized vacuum sealing. Preparation of such a highly purified $Hg_2Br_2$ materials will pave a promising way toward a high-quality $Hg_2Br_2$ single crystal and then high performance AOTF modules.

Development of Customizable Fluorescence Detection System using 3D Printer (3D 프린터를 활용한 맞춤형 휴대용 형광측정 장치 개발)

  • Cho, Kyoung-rae;Seo, Jeong-hyeok;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.278-280
    • /
    • 2019
  • Flow cytometer is one of the instrument that can measure various optical properties of a single cell or microparticle. These parameters including size, granularity, and fluorescence intensity are determined by the physical and optical interaction of the cells with excitation light source. However, users have some difficulties such as high cost, size of instrument, and limited fluorescence selectivity. In addition, abundant data is also unintentionally acquired even though user wants to have a single optical parameter. For these reasons, the use of flow cytometer is more challenging for researchers to apply their study. Therefore, the proposed study aims to develop a low-cost portable fluorescence acquisition system using a commercially available light-emitting diode and photodiode. It is designed by a 3D printer, and fluorescence selectivities are increased by changing of the light source / optical filter / detection sensor. Various number sets of fluorescently labeled cells were measured, and its feasibility was evaluated through the proposed system. As a result, acquried fluorescence intensities were proportional to the concentration of the cells and showed high linearity.

  • PDF

Grain growth behavior of porous Al2O3 with addition of La2O3 prepared via freeze-casting (동결주조로 성형한 La2O3가 첨가된 Al2O3 다공체의 소결 중 입자성장 거동)

  • Kim, Sung-Hyun;Woo, Jong-Won;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.231-238
    • /
    • 2022
  • To secure the mechanical strength of porous Al2O3 ceramics, which can be utilized for filters and catalyst supports is essential for their functionality and durability. Superior mechanical strength would be obtained by tailoring the densification and grain growth during sintering. This study deals with grain growth behavior of a freeze-casted Al2O3 with addition of La2O3. In a temperature range between 1400 and 1600℃, variations of average grain size with sintering time and temperature were observed and analyzed with Gtn-G0n = kt and with k = k0exp(-Ea/RT). As a result, n value and activation energy (Ea) for grain growth were calculated as 3 and 489.09 kJ/mol, respectively. These commonly confirms retardation effect of the La addition during sintering of Al2O3 porous structure. More accurate analysis on the La effect can be followed to provide useful guidance for the selection of additives for better mechanical strength in Al2O3 porous structures.

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.

Flood Disaster Prediction and Prevention through Hybrid BigData Analysis (하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방)

  • Ki-Yeol Eom;Jai-Hyun Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • Recently, not only in Korea but also around the world, we have been experiencing constant disasters such as typhoons, wildfires, and heavy rains. The property damage caused by typhoons and heavy rain in South Korea alone has exceeded 1 trillion won. These disasters have resulted in significant loss of life and property damage, and the recovery process will also take a considerable amount of time. In addition, the government's contingency funds are insufficient for the current situation. To prevent and effectively respond to these issues, it is necessary to collect and analyze accurate data in real-time. However, delays and data loss can occur depending on the environment where the sensors are located, the status of the communication network, and the receiving servers. In this paper, we propose a two-stage hybrid situation analysis and prediction algorithm that can accurately analyze even in such communication network conditions. In the first step, data on river and stream levels are collected, filtered, and refined from diverse sensors of different types and stored in a bigdata. An AI rule-based inference algorithm is applied to analyze the crisis alert levels. If the rainfall exceeds a certain threshold, but it remains below the desired level of interest, the second step of deep learning image analysis is performed to determine the final crisis alert level.

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Enhancement of the Deformable Image Registration Accuracy Using Image Modification of MV CBCT (Megavoltage Cone-beam CT 영상의 변환을 이용한 변환 영상 정합의 정확도 향상)

  • Kim, Min-Joo;Chang, Ji-Na;Park, So-Hyun;Kim, Tae-Ho;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • To perform the Adaptive Radiation Therapy (ART), a high degree of deformable registration accuracy is essential. The purpose of this study is to identify whether the change of MV CBCT intensity can improve registration accuracy using predefined modification level and filtering process. To obtain modification level, the cheese phantom images was acquired from both kilovoltage CT (kV CT), megavoltage cone-beam CT (MV CBCT). From the cheese phantom images, the modification level of MV CBCT was defined from the relationship between Hounsfield Units (HUs) of kV CT and MV CBCT images. 'Gaussian smoothing filter' was added to reduce the noise of the MV CBCT images. The intensity of MV CBCT image was changed to the intensity of the kV CT image to make the two images have the same intensity range as if they were obtained from the same modality. The demon deformable registration which was efficient and easy to perform the deformable registration was applied. The deformable lung phantom which was intentionally created in the laboratory to imitate the changes of the breathing period was acquired from kV CT and MV CBCT. And then the deformable lung phantom images were applied to the proposed method. As a result of deformable image registration, the similarity of the correlation coefficient was used for a quantitative evaluation of the result was increased by 6.07% in the cheese phantom, and 18% in the deformable lung phantom. For the additional evaluation of the registration of the deformable lung phantom, the centric coordinates of the mark which was inserted into the inner part of the phantom were measured to calculate the vector difference. The vector differences from the result were 2.23, 1.39 mm with/without modification of intensity of MV CBCT images, respectively. In summary, our method has quantitatively improved the accuracy of deformable registration and could be a useful solution to improve the image registration accuracy. A further study was also suggested in this paper.