• 제목/요약/키워드: 강우 자료

Search Result 2,867, Processing Time 0.041 seconds

Development of radar rainfall estimation technique considering the elevation effect for hydropower dam operation (발전용 댐 운영을 위한 고도영향을 고려한 레이더 정량적 강우 추정 기술 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.69-69
    • /
    • 2020
  • 수자원 확보 및 홍수 대응을 위해서는 정확한 강우정보를 바탕으로 한 효율적인 댐 운영이 필요하다. 그러나 댐이 위치한 지역은 산지지역으로 강우관측소 밀도의 지역적인 편차로 인해 지상 관측 강우자료 활용 시 강우 정보의 정확도 확보에 한계가 있다. 또한, 강우의 시·공간적 변동성 심화로 기존의 강우계만으로는 정확한 강우량 추정이 어려워 이를 홍수기 댐 운영의 기초정보로 활용 시 합리적 댐 운영에 한계가 있다. 댐 운영 시 강우 관측정보는 댐 유입량 산정을 위한 강우-유출해석 모형의 입력 자료로 활용되기 때문에 강우량 자료의 정확도 확보가 무엇보다 중요하나, 현재 댐 운영에 필요한 강우 관측정보로는 지상우량계 자료가 주로 활용되고 있어 이를 보완하고자 일반적으로 강우의 공간분포를 관측할 수 있는 고해상도 레이더 강우 정보가 활용되고 있다. 본 연구에서는 전력생산(발전) 및 용수공급, 홍수조절 기능을 고려하여 운영되고 있는 한국수력원자력(주)의 수력발전용댐(팔당, 의암, 춘천, 화천, 청평, 도암, 괴산, 섬진강, 보성강댐)에 활용할 수 있도록 환경부 합성레이더 자료를 바탕으로 레이더 강우정보를 산출하고, 레이더 강우의 정확도 향상을 위해 고도영향을 고려한 레이더 강우 보정기술을 개발하고자 한다. 적용한 기법은 강우장의 공간적 구조는 레이더 자료로 획득하고, 강우량은 강우계 관측정보를 합성하는 조건부합성기법을 기본으로 하며, 고도 영향을 고려할 수 있도록 강우분포장 생성 시 주변수를 강우로, 이차변수를 고도로 정의한 표준화된 정규공동크리깅을 활용한 기법이다. 본 연구를 통해 산출된 레이더 강우를 댐 유입 측면에서 기존의 보정기법과 비교하여 정확도를 검토하고, 댐 운영에 활용할 수 있도록 유역평균강우량 정보를 산출하고자 한다.

  • PDF

Radar rainfall estimation and accuracy verification according to rainfall types (강우유형에 따른 레이더 강우 추정 및 정확도 검증)

  • Gi Moon Yuk;Sang Min Jang;Kyoung Hun An
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.267-267
    • /
    • 2023
  • 최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수 피해가 증가하고 있다. 레이더는 넓은 영역에 대해 고해상도의 강우 정보를 제공할 수 있으므로 위험기상 감시 및 실황 예측 모형의 입력자료로써 활용도가 높다. 레이더 강우량은 대기 중 강수입자에 대한 레이더 반사도와 강우강도의 Z-R 관계식으로 추정되기 때문에 강우 추정 과정에 불확실성을 내포하고 있다. 특히, 우리나라의 여름철 한반도의 집중호우는 층운형 강우와 함께 대류형 강우가 동반되는 복합적인 강우시스템에서 자주 발생하지만, 레이더 강우는 일반적으로 단일 강우시스템에 대한 고정된 Z-R 관계식으로 추정하므로, 이러한 현상에 대해 과대 추정 혹은 과소 추정이 발생한다. 본 연구에서는 집중호우에 적합한 강우를 추정하기 위해 2021년 8월 21일부터 8월 25일까지 경남 호우사례를 대상으로 층운형, 대류형, 열대형의 Z-R관계식과 반사도 조건에 따라 층운형과 적운형을 구분하여 Z-R 관계식을 적용하여 레이더 강우량 자료를 산출하였으며, 지상강우자료를 이용하여 정확도를 평가하였다. 레이더 자료 처리를 위해 Radar Software Library (RSL)를 이용하여 수평으로 1km 해상도의 1.5km CAPPI (Constant Altitude Plan Position Indicator) 자료로 변환하였다. 레이더 강우 추정의 정확도를 평가하기 위해 레이더 지점으로부터 100 km 이내에 위치하고 있는 기상관서와 자동기상관측소의 강우관측 결과와 비교·분석하였다.

  • PDF

The Applicability of KIMSTORM for Flood Simulation Using Conditional Merging Method and Radar Rain Data (조건부 합성기법과 레이더 강우자료를 이용한 분포형 강우유출모형 KIMSTORM의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.136-136
    • /
    • 2017
  • 본 연구의 목적은 이중편파 레이더 강우자료와 현재 실무에서 널이 이용되고 있는 레이더 강우보정 기법 적용에 따른 격자기반 분포형 강우-유출 모형인 KIMSTORM (KIneMatic wave STOrm Runoff Model)을 이용하여 유출해석을 수행하여 보정된 레이더 강우자료를 적용한 분포형 수문모형의 효율성을 검토하는데 있다. 남강댐 유역($2,293km^2$)을 대상으로 2014년 8월 태풍 이벤트(나크리), 2016년 10월 태풍 이벤트(차바)에 대하여 비슬산 레이더 강우자료를 사용하였다. 강우자료의 보정은 21개 지점 강우와 레이더 강우를 이용하여 조건부 합성 보정기법을 이용하였으며, 누적 강우량 그리고 면적 강우량 모두 관측치를 잘 재현함을 확인 할 수 있었다. $R^2$(coefficient of determination), ME (model efficiency), VCI (volume conservation index)를 이용하여 적용성을 평가하였다. 2016년 태풍 차바 이벤트에서의 유출 모형의 보정결과 조건부 합성 보정기법을 적용하기전 $R^2$, ME는 각각 0.75, 0.13으로 나타났고 조건부 합성 보정기법을 적용하였을 경우 각각 0.87, 0.82로 유출량 정확도가 크게 향상됨을 나타냈다. 다양한 국지성 집중호우 이벤트는 레이더 강우자료의 과대 및 과소추정을 유발하는 오차의 원인으로 조건부 합성 보정기법은 이러한 오차를 줄여 강우-유출 모형의 유출분석 결과 비교시 첨두유량 및 정량적인 면에서 실측 유량과 가깝게 모의되는 결과를 나타냈다.

  • PDF

The Applicability of KIMSTORM2 for Flood Simulation Using Conditional Merging Method and GPM Satellite Rainfall Data (조건부 합성기법과 GPM 위성강우자료를 이용한 분포형 강우유출모형 KIMSTORM2의 홍수모의 적용성 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.111-111
    • /
    • 2018
  • 본 연구의 목적은 조건부 합성 기법(Conditional Merging, CM) 기법을 활용하여 GPM(Global Precipitation Measurement) 위성 자료를 보정하고, 이를 격자기반 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)에 적용하여 보정된 자료의 효율성을 검토하는데 있다. 모형의 유출 해석은 남강댐 유역($2,293km^2$)을 대상으로 하였으며, 2016년 10월에 발생한 태풍 차바에 대하여 GPM 자료와 CM 기법을 적용한 GPM 자료를 각각 활용하여 결과를 비교하였다. 이 때, 강우자료의 보정은 유역 내 위치한 21개 지점의 지상강우자료를 활용하였으며, 각각의 위성강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였다. 유출 결과는 결정계수(Coefficient of determination, $R^2$), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 유출용적지수(Volume conservation index, VCI)를 이용하여 산정하였다. 지상강우자료와 CM 기법을 통해 보정한 강우자료는 대기의 많은 영향을 받는 위성자료의 특성을 보정하여 공간유출 및 첨두유출을 합리적으로 재현할 수 있을 것으로 예상된다.

  • PDF

Calibration of Real Time Rainfall Data Using Mutual Information and Artificial Neural Network (상호정보량 기법과 인공신경망을 이용한 실시간 강우 자료 보정)

  • Sung, Kyung-Min;Goo, Yeo-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1269-1273
    • /
    • 2010
  • 이러한 강우자료의 결측값이나 오자료를 보정하는 것은 그 유역의 정확한 수문학적 특성 파악 및 안전한 수공구조물의 설계에 영향을 미치게 되므로 매우 중요하다고 할 수 있다. 최근 이러한 강우자료를 비선형적 모델인 인공신경망(Artificial Neural Network)을 이용하여 보정하는 연구가 활발히 진행되고 있다(오재우 등, 2008). 그러나 이러한 인공신경망을 적용하는 경우, 선택한 신경망 구조의 형태와 학습(training)을 위해 사용되는 자료가 전체 자료의 특성을 반영하고 있는 정도에 따라 정확도에 차이를 보인다(한광희 등, 2010). 따라서 자료보정을 위한 입력 자료의 선택은 인공신경망을 이용한 결측치 보정의 중요한 과정이다. 본 연구에서는 이러한 입력 자료의 선택을 위한 여러 가지 기법 중 입력 변수간의 상호정보량 (Mutual Information)을 이용한 방법을 적용하여 대상 결측 지점을 보정할 강우지점을 선별한 후 선택된 지점만으로 인공신경망을 구성하여 강우자료를 보정하고 주변 자료를 모두 이용한 결과와 상관성분석으로 얻어진 결과와 비교하였다.

  • PDF

Calculation of Rainfall Erosivity using Rainfall Erosivity Calculator (강우인자계산기를 이용한 강우침식인자 산정)

  • Lee, Joon-Hak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.30-30
    • /
    • 2019
  • 본 연구는 지점별 연평균 강우침식인자 값을 2018년 호우사상을 포함한 최신자료로 업데이트하기 위한 것이다. 이를 위하여 기상자료개방포털의 QC 테스트를 통과한 강수량 자료를 2018년 자료까지 수집하여 입력데이터로 활용하였다. 본 연구에서는 국립농업과학원에서 개발한 강우인자 계산기를 이용하여 지점별 연평균 강우침식인자 값을 재산정한 뒤, 기존 연구의 결과값과의 차이점을 비교 분석하였다. 산정된 지점별 강우침식인자 값을 바탕으로 강우침식인자의 공간분포 지도인 등강우침식도를 작성하였으며, 기존에 학계에 보고된 선행연구 결과의 등강우침식도와 비교하여, 강우침식인자의 지역별 분포의 최근 변화 양상을 분석하여 제시하였다.

  • PDF

Experimental study on peak flow variability using spatially extended data (공간확장자료를 사용한 첨두유량의 변동성에 대한 실험적 연구)

  • Kim, Nam Won;Shin, Mun-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.365-365
    • /
    • 2017
  • 강우의 공간분포는 홍수수문곡선에 큰 영향을 미친다. 이것은 총강우량이 같더라도 강우의 공간분포 특성에 따라 홍수수문곡선 및 첨두유량의 크기가 다를 수 있다는 것을 의미한다. 따라서 강우의 공간분포는 홍수량 산정과 홍수해석은 물론 수자원 설계에 큰 영향을 미칠 수 있다. 본 연구에서는 안동댐유역을 대상으로 물리적 기반의 분포형 모형인 GRM 모형과 공간확장자료 생성방법을 사용하여 47개 미계측유역에 대해 홍수유출 시계열자료를 생성하고 3개 관측유역을 포함한 총 50개 유역에 대해 첨두유량을 추출하여 분석함으로써 강우의 공간분포가 유출에 미치는 영향을 실제유역과 실제사상에 대해 자세히 분석하였다. 공간확장자료 생성방법은 보정 및 검증유역에서 모의유량이 관측유량을 적절히 모의한다면 추정된 매개변수값들을 상류지역에 있는 미계측유역에 적용하여 유량자료를 생성하는 방법이다. 1989년부터 2009년까지의 강우와 유출자료의 질이 좋은 20개의 사상을 추출하고 이 사상들과 3개 관측유역에 대해 GRM 모형의 매개변수들을 보정 및 검증하였다. 그 결과 NSE > 0.5, PBIAS ${\pm}30%$, 그리고 수정상관계수인 $_{mod}>0.6$의 적절한 모형효율 통계결과를 얻었다. 강우의 공간분포가 유출에 미치는 영향을 조사하기 위해 이 추정된 매개변수와 실제강우(강우의 공간분포를 고려한 강우) 및 공간평균강우(실제강우를 공간적으로 평균한 강우)를 사용하여 50개 유역의 홍수유출 시계열자료를 생성하였으며 이 시계열 자료 중 첨두유량을 추출하여 분석하였다. 그 결과 공간평균강우에 의한 첨두유량의 분포는 실제강우에 의한 첨두유량의 분포와 차이가 있었다. 20개 사상중 13개의 사상은 실제강우와 공간평균강우에 의한 첨두유량의 분포가 비슷하거나 공간평균강우에 의한 첨두유량의 분포가 실제강우에 의한 첨두유량의 분포보다 약간 좁아지는 차이가 있었다. 하지만 나머지 7개 사상의 경우에는 공간평균강우에 의한 첨두유량의 분포가 실제강우에 의한 첨두유량의 분포보다 크게 좁아지는 것을 보였다. 이것은 전체사상의 약 35 %에 대해서는 강우의 공간적 변동성을 고려하지 않고 홍수유출을 모의한다면 적절하지 않은 첨두유량 모의결과를 얻을 수 있다는 것을 나타내며 또한 홍수체적에 대해서도 적절하지 않은 모의결과를 얻을 수 있다는 것을 의미한다. 이것은 또한 강우관측소의 밀도가 홍수유출 모의 시 매우 중요하다는 것을 의미한다. 따라서 홍수량 산정 또는 수자원 설계 시 강우의 시간분포 뿐만 아니라 공간분포 또한 고려해야 한다.

  • PDF

Sensitivity of a hydrological model to areal precipitation estimates: impacts on precipitation data selection considering homogeneous rainfall regions (강우특성의 동질성을 고려한 유역 평균 강우량이 수문모형의 성능 개선에 미치는 영향 평가)

  • Jung-Hun Song;Hakkwan Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.351-351
    • /
    • 2023
  • 강우 자료는 수문 모델링에서 중요한 입력 요소 중 하나이다. 강우의 공간적 가변성은 모델링 불확실성의 중요한 원인으로 알려져 있다. 강우 관측자료는 많은 경우 유역을 대표하는 평균 면적강수량 (Mean Areal Precipitation, MAP)을 계산하여 수문모형에 입력된다. 선행 연구에서는MAP 예측 결과의 신뢰도를 개선하기 위하여 다양한 보간 방법이 개발되었다. 하지만, 강우특성의 동질성를 고려한 대표 기상 관측소 선정이 MAP 예측과 유출량 모의 결과에 미치는 연구는 아직 미흡한 실정이다. 본 연구에서는 유역의 MAP 예측에 있어 강우특성의 동실성을 고려한 강우 관측소 선정이 수문 모델링 성능 개선에 미치는 영향을 평가하고자 한다. 본 연구에서는 종관 기상관측(ASOS) 74개 지점과 방재기상관측(AWS) 400여개 지점에서 2003~2022년 기간에 대한 일강수량 자료를 수집하였고 강우특성이 동질한 지역을 구분하였다. 또한, 강우특성 동질성의 고려 유무에 따른 MAP를 계산하였다. 이후, 5개의 매개변수로 이루어진 개념적 강우-유출 모형FPHM을 사용하여 우리나라 전역 41개 유역을 대상으로 MAP 계산 결과가 모형 성능에 미치는 민감도를 조사하였다. 분석 결과, 강우특성의 동질성을 고려한 강우 관측소의 선택은 MAP 보간 방법 이상으로 중요한 요소임을 확인할 수 있었다.

  • PDF

Analysis of runoff according to the time and space characteristics of hourly rainfall data in Seoul (서울 강우자료의 시·공간적 특성에 따른 유출분석)

  • Hyun, Jung Hoon;Park, Hee Seong;Chung, Gun Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.216-216
    • /
    • 2019
  • 최근 이상 기후로 인하여 홍수피해가 많이 발생 하고 있다. 특히 도시유역의 도시화로 인해 불투수면적이 증가하여 내수 침수도 증가하였다. 이로 인하여 재산피해와 인명피해가 증가하면서 전 세계적으로 홍수 저감 연구가 진행 되고 있다. 강우의 시 공간적인 특성을 파악 하여 강우 사상을 정의 한다면 도시홍수 저감 에 있어 도움이 될 것이라 판단된다. 우리나라 서울 지역의 설계 강우량을 산정하기 위해 서울기상청에서 제공하고 있는 ASOS(Automated Surface Observing System) 를 사용해 왔다. 하지만 ASOS을 사용하게 되면 강수량의 공간 특성을 고려하기 어렵지만 AWS(Automatic Weather Stations) 는 세밀한 관측망을 가지고 있어 공간적 특성을 고려할 수 있다. 본 연구에서는 서울 기상청에서 제공하고 있는 강우 자료의 20개년 연속된 강우자료를 통해 강우자료를 구축 하였다. 서울지역의 유역을 선정하였으며 도시유역 강우-유출 해석에 많이 사용되는 EPA-SWMM 모형에 ASOS 와 AWS 강우자료를 적용하여 유출 분석을 하였다. 이러한 자료를 바탕으로 공간 특성 분석을 실시하여 더욱 세밀한 설계 강우량 산정에 도움을 있을 것으로 판단된다.

  • PDF

A spatiotemporal adjustment of precipitation using radar data and AWS data (레이더와 지상관측소 강우자료를 이용한 시공간 강우 조정 모형)

  • Shin, Tae Sung;Lee, Gyuwon;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Precipitation is an important component for hydrological and water control study. In general, AWS data provides more accurate but low dense information for precipitation while radar data gives less accurate but high dense information. The objective of this study is to construct adjusted precipitation field based on hierarchical spatial model combining radar data and AWS data. Here, we consider a Bayesian hierarchical model with spatial structure for hourly accumulated precipitation. In addition, we also consider a redistribution of hourly precipitation to 2.5 minute precipitation. Through real data analysis, it has been shown that the proposed approach provides more reasonable precipitation field.