Jung, Sung Ho;Le, Xuan-Hien;Nguyen, Van-Giang;Choi, Chan Ul;Lee, Gi Ha
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.62-62
/
2022
홍수 예보를 위한 강우-유출 분석에서 정확한 예측 강우량 정보는 매우 중요한 인자이다. 이에 따라 강우 예측을 위하여 다양한 연구들이 수행되고 있지만 시·공간적으로 비균일한 특성 또는 변동성을 가진 강우를 정확하게 예측하는 것은 여전히 난제이다. 본 연구에서는 딥러닝 기반 ConvLSTM (Convolutinal Long Short-Term Memory) 모형을 사용하여 위성 강수 자료의 단기 예측을 수행하고 그 정확성을 분석하고자 한다. 대상유역은 메콩강 유역이며, 유역 면적이 넓고 강우 관측소의 밀도가 낮아 시·공간적 강우량 추정에 한계가 있으므로 정확한 강우-유출 분석을 위하여 위성 강수 자료의 활용이 요구된다. 현재 TRMM, GSMaP, PERSIANN 등 많은 위성 강수 자료들이 제공되고 있으며, 우선적으로 ConvLSTM 모형의 강수 예측 활용가능성 평가를 위한 입력자료로 가장 보편적으로 활용되는 TRMM_3B42 자료를 선정하였다. 해당 자료의 특성으로 공간해상도는 0.25°, 시간해상도는 일자료이며, 2001년부터 2015년의 자료를 수집하였다. 모형의 평가를 위하여 2001년부터 2013년 자료는 학습, 2014년 자료는 검증, 2015년 자료는 예측에 사용하였다. 또한 민감도 분석을 통하여 ConvLSTM 모형의 최적 매개변수를 추정하고 이를 기반으로 선행시간(lead time) 1일, 2일, 3일의 위성 강수 예측을 수행하였다. 그 결과 선행시간이 길어질수록 그 오차는 증가하지만, 전반적으로 3가지 선행시간 모두 자료의 강수량뿐만 아니라 공간적 분포까지 우수하게 예측되었다. 따라서 2차원 시계열 자료의 특성을 기억하고 이를 예측에 반영할 수 있는 ConvLSTM 모형은 메콩강과 같은 미계측 대유역에서의 안정적인 예측 강수량 정보를 제공할 수 있으며 홍수 예보를 위한 강우-유출 분석에 활용이 가능할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.149-153
/
2006
Precipitation is the most important component and critical to the study of water and energy cycle. This study investigates the propagation of precipitation retrieval uncertainty in the simulation of hydrologic variables for varying spatial resolution on two different vegetation cover. We explore two remotely sensed rain retrievals (space-borne IR-only and radar rainfall) and three spatial grid resolutions. An offline Community Land Model (CLM) was forced with in situ meteorological data In turn, radar rainfall is replaced by the satellite rain estimates at coarser resolution $(0.25^{\circ},\;0.5^{\circ}\;and\;1^{\circ})$ to determine their probable impact on model predictions. Results show how uncertainty of precipitation measurement affects the spatial variability of model output in various modelling scales. The study provides some intuition on the uncertainty of hydrologic prediction via interaction between the land surface and near atmosphere fluxes in the modelling approach.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1013-1017
/
2008
이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.463-463
/
2017
최근 다변량 확률모형 연구 및 기후변화에 따른 강우패턴 연구의 증가에 따라 시계열로 기록되어 있는 강우량 자료로부터 강우사상(Event)을 분리하는 연구 또한 활발히 이루어지고 있다. 일반적으로 강우사상은 최소무강우시간(Inter-Event Time)을 기준으로 전후강우가 독립적인 강우인지 연속적인 강우인지 구별하는데 이 최소무강우시간을 결정하는 방법이 각 사용되는 분야마다 일관되지 않은 점이 있다. 본 연구에서는 30년 이상 기록된 기상청 강우관측소 자료를 이용하였으며, 설계강우의 시간분포를 위한 Huff 4분위법에서 사용되는 6시간의 최소무강우시간분터 지수확률분포 방법으로 얻어지는 최소무강우시간(일반적으로 12시간 내외)까지 최소무강우시간의 변화에 따라 분리된 강우사상의 특성을 분석하였다. 또한 강우사상의 이변량 빈도해석 적합성을 검토하기 위해 연최대강우량 사상을 선정하여 빈도해석을 수행하였으며 최소무강우 시간에 따라 이변량 확률분포형 적합성을 검토하였다.
Korean Journal of Agricultural and Forest Meteorology
/
v.1
no.2
/
pp.142-150
/
1999
During the past three decades after the first attempt to use satellite imagery or derived cloud products for rainfall estimation, much is known and understood concerning the scope and difficulties of satellite rainfall monitoring. After a brief general introduction this paper reviews recent progress in this field with special reference to improvement of algorithms, inter-comparison projects, integrative use of data from different sources, increasing lengths of data records and derived products, and interpretability of rainfall results. Also the paradigm of TRMM (Tropical Rainfall Measuring Mission) which is the first space mission(1997) dedicated to measuring tropical and subtropical rainfall though microwave and visible/infrared sensors, including the first spaceborne rain radar was introduced, and the potential applicability to the field of agriculture and water resources by combining satellite imagery is described.
Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
Journal of Korea Water Resources Association
/
v.42
no.10
/
pp.773-783
/
2009
The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1412-1416
/
2009
최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.
Rainfall is one of the most important input data of hydrologic models. Rain gage is used to estimate areal rainfall for hydrologic models using several interpolation method such as Thiessen polygon, Inverse Distance Squared(IDS) and Kriging. However, it is still difficult to derive actual spatial distribution of the rainfall using the aforementioned approaches. On the other hand, radar can offer a significant analytic improvement for rainfall analysis by providing directly more representative of the true spatial distribution of rainfall. In this study, In this study, spatial distributions of rainfall derived form rain gages using IDS and Kriging and rainfall from radar are compared. As results, it is found that using radar can provide actual spatial distribution than rain gages.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.61-61
/
2022
최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.285-285
/
2016
설계홍수량 산정 시, 지점강우량을 대상 유역 내 면적강우량으로 환산하기 위해 면적우량환산계수(ARF, Areal Reduction Factors)를 적용한다. ARF를 산정하는 방법은 크게 면적고정형법(Fixed-Area Method)과 호우중심형법(Storm-Centered Method)로 나뉜다. 면적고정형법은 현재 국내 하천설계기준에서 활용하고 있는 방법이지만, 공간적 관측밀도의 제약으로 정확한 ARF 산정에는 한계가 있다. 또한 연 최대치계열의 독립적인 빈도해석을 통해 지점강우량과 면적강우량을 산정하므로 동시간(Synchronized)에 발생하는 강우 사상이라고 볼 수 없기 때문에 산정된 ARF는 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형법은 각각의 강우사상을 분석 대상 유역 중심에 공간전이 시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우 자료를 활용하면 현실적 ARF값의 산정이 가능해진다. 레이더 강우는 기상청에서 제공하는 2007-2012년 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하였으며, 대상지역으로는 한강 권역을 선정하였다. 그러나 기상청 레이더강우 자료의 경우 가용기간이 아직까지 충분하지 않아 다양한 빈도의 강우사상을 확보하는데 한계가 있어, 보조적으로 한강 권역의 지상강우 관측 자료를 수집하여 높은 재현기간의 강우사상이 부족한 문제점을 해결하고자 하였다. 산정된 레이더 및 지상강우 호우중심형 ARF는 통계적 분석을 통해 비초과확률 90%, 95%의 값을 추출하였으며, 지속시간 1시간, 3시간, 6시간, 12시간, 24시간과 재현기간 0~10년, 10~20년, 20~50년, 50~80년, 80~100년에 대한 호우중심형 ARF 회귀상수를 제시하였다. 비초과확률 95%에서 기존 국토해양부(2011)에서 제시된 ARF와 호우중심형 ARF는 대체로 유사한 경향을 보이고 있었으나, 지속시간이 비교적 긴 12시간, 24시간에서는 호우중심형이 기존 ARF보다 다소 작게 산정되는 패턴을 보이고 있어 설계적용 시 유의해야 할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.