• Title/Summary/Keyword: 강우 에코

Search Result 29, Processing Time 0.035 seconds

Partitioning Bimodal Spectrum Peak in Raw Data of UHF Wind Profiler (UHF 윈드프로파일러 원시 자료의 이중 스펙트럼 첨두 분리)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • In addition to non-meteorological echoes, meteorological echoes with large scattering effects, such as precipitation, cause errors in wind data measured by wind profiler. In the rainfall situation, the Doppler spectrum of wind profiler shows both the rainfall signal and the atmospheric signal as two peaks. The vertical radial velocity is very large due to the falling rain drop. The radial velocity contaminated by rainfall decreases the accuracy of the horizontal wind vector and leads to inaccurate weather analysis. In this study, we developed an algorithm to process raw data of wind profiler and distinguished rainfall signal and wind signal by partitioning bimodal peak for Doppler spectrum in rainfall environment.

Selection Technique of Filter based on Analysis for Variables of Dual Polarized Radar (이중편파레이더 변수 분석 기반 필터 선정 기법)

  • Lee, Keon Haeng;Lim, Sanghun;Jang, Bong Joo;Hyun, Myung Suk;Lee, Dong Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.517-517
    • /
    • 2015
  • 레이더에 수신된 신호는 신호처리기를 통해 자료의 해석시 불필요한 지형에코를 제거하는 과정을 거친다. 신호처리기의 필터는 레이더의 기종에 따라 다르나, 일반적으로 도플러 속도나 스펙트럼 폭의 값에 따라 지형에코를 제거하며, 이 값들에 따라 번호를 부여하여 필터를 선택적으로 이용할 수 있도록 되어 있다. 본 연구에서는 국토교통부에서 운영하고 있는 비슬산 강우레이더와 소백산 강우레이더의 필터번호에 따른 반사도의 빈도 영역 그래프, 반사도-차등반사도의 빈도 산포도, 반사도와 차등반사도의 평균 및 표준편차를 통해 적정 필터를 선정하고자 하였다. 이 때, 지형에코와 기상에코의 제거 정도 확인을 위해 레이더 관측반경 50 km를 기준으로 비교를 수행하였다. 그 결과, 1번 필터 이후에는 필터에 따른 큰 변화가 없어 1번 필터를 사용하는 것이 기상에코를 보존하면서 지형에코를 제거하는 효과가 가장 좋은 것으로 판단되었다.

  • PDF

Rainfall estimation and evaluation for a small-scale rainfall radar in Busan Eco-Delta Smart city (부산 에코델타 스마트시티 소형 강우레이더 강우추정 및 평가)

  • Wan Sik Yu;Kyoung Pil Kim;Shin Uk Kang;Seong Sim Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.277-277
    • /
    • 2023
  • 최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있는 추세이며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있으며, 급격한 도시화로 인한 구조적으로 홍수에 취약한 실정이다. 국지성 도시호우는 저층(1 km 내외)에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 높은 산 정상에 설치되어 1.5 km 이상의 강우관측을 중심으로 운영됨에 따라 저층강우의 탐지 및 변동성 관측에 취약하여, 이에 대형 레이더에서 뿐만 아니라 도시단위의 국지성 호우관측에 대응할 수 있는 소형 레이더 기반 고정밀 강우관측 마련 및 운영 기술이 필요하다. 현재 K-water는 부산 에코델타 스마트시티에 도시 물재해 플랫폼 구현의 일환으로 돌발강우사전 탐지 및 도시의 신속·정확한 강우 관측을 위하여 높은 시공간 해상도를 제공하는 이중편파X 밴드 소형 강우레이더를 설치하고, 효율적 운용을 위해 각 고도각에서의 빔 차폐율을 확인하고 이를 고려한 최적 관측전략을 수립하였다. 또한 Z-Phi 방법을 이용한 반사도 감쇠 보정 기술을 개발하였으며, 강우 추정을 위해 하이브리드 고도면 합성 기법(HSR) 기법을 적용하고 검증하였다. 이후 소형 레이더의 정량적 추정강수를 이용하여 강우예측 정보를 생산하기 위해 이류모델을 적용하고, 비슬산과 소형 합성 레이더 추정강수로 선행 10분에서 180분까지 예측할 수 있도록 개발하였다. 또한, 지상강우관측 자료와의 정확도 비교 평가를 수행하고, 행정구역 및 표준유역의 예측 평균강우량을 생산하여 부산 에코델타 스마트시티 도시 물재해 통합관리 시스템과 연계운영을 위한 후속 과업을 수행중에 있다.

  • PDF

A Study on the Hydrological Quantitative Precipitation Forecast(HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 연구)

  • Choo, Kyung-Su;Shin, Yoon-Hu;Kim, Sung-Min;Jee, Yongkeun;Lee, Young-Mi;Kang, Dong-Ho;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.63-63
    • /
    • 2022
  • 기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.

  • PDF

Short-range Precipitation Prediction using Radar Echo Correlation (Radar Echo Correlation을 이용한 단시간 강수예측기법 개발)

  • Kim, Gwang-Seob;Kim, Jong-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.924-927
    • /
    • 2005
  • 한반도의 강수패턴을 보면 강수일수는 감소하나 호우일수는 증가하고 있는 추세이다. 특히, 우리나라는 강수의 대부분이 하계에 집중되어 있고, 단시간에 강수의 변화가 심하기 때문에 기존의 수치예보를 보완해줄 수 있는 예보체계의 확립이 불가피한 실정이다. TREC(Tracking Radar Echoes by Correlation)기법은 폭풍에 대한 내부 움직임을 결정하기 위한 목적으로 Rinehart와 Garvey(1978)에 의해 처음 개발된 것으로 비교적 간단하게 레이더 에코를 이용하여 강수의 이동경로를 추적할 수 있다. 일정한 시간 간격으로 제공되는 레이더 반사도 자료에 대하여 설정된 두 window 사이의 상관계수의 최대치를 찾아냄으로써 강수의 움직임을 파악하였다. 개발된 기법은 레이더 에코로부터 강수의 안정된 이동방향과 이동속도를 제시하기 위하여 상관성 분석과 함께 일치성 분석 및 가중함수에 의한 이동 백터장 보정을 수행하였다. 또한 이동 백터의 외삽을 통하여 강우이동경로와 대상유역의 단시간 예측 면적 강우 산정 방법을 제시하였다. 결과는 개선된 단시간 강수예측 가능성을 보여주었다.

  • PDF

Rainfall estimation and Hydrometeor classification with the NIMR X-POL radar (연구용 X-band 이중편파 레이더를 이용한 강수정량추정 및 대기수상체 분류 사례분석)

  • Kang, Mi-Young;Nam, Kyung-Yeub;Heo, Sol-Ip;Choi, Jae-Cheon;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.277-277
    • /
    • 2012
  • 국립기상연구소(National Institute of Meteorological Research; NIMR)는 기상청 이중편파 레이더 현업운영에 대비하여 2009년 X-band 연구용 이중편파 레이더를 도입하였고, 편파변수의 산출과 대기수상체 분류를 포함한 강수추정 등의 효용 가능성에 대한 연구를 지난 2년간 수행하고 있다. 이중편파 레이더는 반사도( )뿐만 아니라 차등반사도($Z_R$), 비차등 위상($K_{DP}$), 상관계수($_v$)등의 편파 변수의 산출로 강우감쇠보정과 기상에코-비기상의 에코(ground clutter, insects, birds, chaff)의 구별이 가능하다. 이러한 장점들을 이용해 레이더 자료품질 개선과 정량적 강수추정의 상당한 개선에 도움이 된다. 본 연구에서는 강수추정 관계식 R-Z, 감쇠 보정된 R-Z, R-$K_{DP}$ 관계식을 이용하여 레이더 관측 반경 내에 존재 하는 81개의 지상 우량계 자료와 강수량 추정의 정확도 비교 검증을 실시하였다. 그리고 Fuzzy logic 기법을 이용한 대기수상체 분류 알고리즘을 사용하였고 관측사례는 2011년 수도권 관측을 통해 강설/강수 에코 구별과 우박에코 사례를 분석하였다. 본 연구를 통해 이중 편파 레이더에서 산출된 고품질의 레이더기상자료를 기반으로 현업 예보지원 및 정량적 강우예측 향상에도 기여할 것으로 사료된다.

  • PDF

An Improvement Study on the Hydrological Quantitative Precipitation Forecast (HQPF) for Rainfall Impact Forecasting (호우 영향예보를 위한 수문학적 정량강우예측(HQPF) 개선 연구)

  • Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2022
  • In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.