• Title/Summary/Keyword: 강우 강도

Search Result 1,592, Processing Time 0.03 seconds

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Characteristic of Raindrop Size Distribution Using Two-dimensional Video Disdrometer Data in Daegu, Korea (2차원 광학 우적계 자료를 이용한 대구지역 우적크기분포 특성 분석)

  • Bang, Wonbae;Kwon, Soohyun;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.511-521
    • /
    • 2017
  • This study analyzes Two-dimensional video disdrometer (2DVD) data while summer 2011-2012 in Daegu region and compares with Marshall and Palmer (MP) distribution to find out statistical characteristics and characteristics variability about drop size distribution (DSD) of Daegu region. As the characterize DSD of Daegu region, this study uses single moment parameters such as rainfall intensity (R), reflectivity factor (Z) and double moment parameters such as generalized characteristics number concentration ($N{_0}^{\prime}$) and generalized characteristics diameter ($D{_m}^{\prime}$). Also, this study makes an assumption that DSD function can be expressed as general gamma distribution. The results of analysis show that DSD of Daegu region has ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$, and c =2.37, ${\mu}=0.39$ on average. When the assumption of MP distribution is used, these figures then end up with the different characteristics; ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$ on average. The differences indicate liquid water content (LWC) of Daegu distribution is generally larger than MP distribution at equal Z. Second, DSD shape of Daegu distribution is concave upward. Other important facts are the characteristics of Daegu distribution change when Z changes. DSD shape of Daegu region changes concave downward (c =2.05~2.55, ${\mu}=0.33{\sim}0.77$) to cubic function-like shape (c =3.0, ${\mu}=-0.13{\sim}-0.33$) at Z > 45 dBZ. 35 dBZ ${\leq}$ Z > 45 dBZ group of Daegu distribution has characteristics similar to maritime cluster of diverse climate DSD study. However, Z > 45 dBZ group of Daegu distribution has a difference from the cluster.

Comparative Analysis of Long-term Water Quality Data Monitored in Andong and Imha Reservoirs (안동호와 임하호에서 관측한 장기 수질자료의 비교 분석)

  • Park, Sun-Jae;Choi, Seong-Mo;Park, Jong-Seok;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.21-31
    • /
    • 2006
  • The objectives of this study were to analyze trends of temporal water quality and trophic state in Andong and Imha reservoirs using chemical dataset during 1993 ${\sim}$ 2004, obtained from the Ministry of Environment, Korea. According to long-term limnological analyses, Suspended solids (SS) in Imha Reservoir were 2 ${\sim}$ 8 fold2 greater, than those in SS of Andong Reservoir, and the high solids increased total phosphorus (TP) and biological oxygen demand ($BOD_5$) and decreased the transparency, measured as Secchi depth (SD). Chlorophyll-a (CHL-a) increased little or decreased slightly in the both reservoirs during the high solids, resulting in reduced yields of CHL-a : TP ratios. The deviation analysis of Trophic State Index (TSI) in Imha Reservoir showed that about 70% of TSI (CHL-a)-TSI (SD) and TSI (CHL-a)-TSI(TP) values were less than zero and the lowest values were-60, indicating that influence of inorganic solids (or non-volatile solids) on phytoplankton growth was evident in Imha Reservoir and the impact was greater than that of Andong Reservoir. Inorganic solids in Imha Reservoir resulted in light limitation on phytoplankton growth and thus contributed variations in the relations among three parameters of trophic state index. Especially, seasonal data analysis of nutrients in both reservoirs showed that during the postmonsoon, mean TP concentration was Imha Reservoir greater in than that in Andong Reservoir. The higher TP concentrantion was mainly attributed to increases of inorganic solids from soil erosions and nonpoint source inputs within the watershed. The high inorganic turbidity in Imha Reservoir should be reduced for the conservation of water quality for, especially a tap water supply.

A Study on Stability of Inorganic Binder for Application as Conservation Material for Stone Monuments (석조문화재 보수물질로의 적용을 위한 무기질 바인더 안정성 연구)

  • Kim, Dae Sik;Do, Jin Young;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.251-262
    • /
    • 2014
  • Inorganic binders were studied in order to apply a conservation material for stone monument. A pure inorganic binder and 3 species of inorganic binder which contain additives on the basis of a pure inorganic binder were selected as test samples. Through the application of inorganic binders on Geochang granite investigate their influences on stone. pH 4.0 and 5.6 acid solution, respectively were manufactured on the basis of the acidity of domestic rainfall. Alkaline water with pH 8.0 and deionized water with pH 6.85 were prepared as control group. Changes in weights of inorganic binders were not definite according to the acidity of water while weight losses in inorganic binder type were greater after reaction with the water. The compressive strengths of pure inorganic binder was largest before the test but its decrease rate were larger after reaction with the water. Water absorption rate of inorganic binders are 6.72 to $12.44kg/m^2{\cdot}t^{1/2}$ after reaction with the water. Such high absorption was considered that it forced water to move deep into inorganic binder and made the components of inorganic binder dissolve. Acidities of the water of pH 4.0, 5.6, 6.85 and 8.0, respectively were changed to pH 9.0-10.0 after reaction with the inorganic binders. Ion concentrations in the water changed after reaction with the inorganic binders and $Mg^{2+}$, and $K^+$ significantly increased, dissolved from the binder. The high concentration of ions detected showed that the binder reacted with water and formed white salts with high solubility such as $MgSO_4{\cdot}nH_2O$, $KNO_3$. Ion concentrations significantly decreased from the binder after treatment with consolidant and water repellent.

Conidial Disperse of the Pepper Anthracnose Fungus Colletotrichum acutatum and Its Density on Infected Fruits (고추 탄저병균(Colletotrichum acutatum)의 분생포자 비산과 과실병반에 형성된 전염원 밀도)

  • Jee, Hyeong-Jin;Shin, Shun-Shan;Lee, Ji-Hyun;Kim, Won-Il;Hong, Sung-Jun;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.101-105
    • /
    • 2010
  • This study was aimed to understand conidial disperse of the pepper anthracnose fungus Colletotrichum acutatum, elapse time for the disease development, and inoculum potentials on infected fruits. Most (99.2%) conidia of the fungus disseminated from inoculum source on the rainy day, while only 0.8% conidia dispersed on the sunny day. Among the conidia 93.3% were caught under 60 cm height at 30 cm distance; however, conidia were detected at 120 cm height at the distance. Relatively susceptible pepper fruits to anthracnose showed first visible symptoms at 4 days after infection under a mimic field condition. However, it seemed that over 10 days are required for the disease to develop on moderately resistant pepper fruits under unfavorable conditions. The number of conidia formed on a lesion was positively correlated with the lesion size ($R^{2}=0.88$). Over 10 millions of conidia were formed at a normal lesion size 1.5 cm in length. In some large coalesced lesions ca. 4cm in length produced over 100 millions of the fungal conidia. Results further confirmed that the rainfall is the key factor for the inoculum disperse of the pepper anthracnose pathogen, Colletotrichum acutatum, and a long distance dissemination is plausible according to rain and wind intensity. Consequently, rain-proof structures are ideal to avoid the disease, and removal of infected fruits and timely chemical spray are indispensible to reduce the inoculum potential in the field.

Soil Characteristics Differences due to Slope Aspect of Sweet Persimmon Orchard Derived from Porphyritic Residuum (반암(斑岩)에서 유래(由來)된 잔적(殘績) 구릉지(丘陵地) 단감과원(果園)의 경사방향별(傾斜方向別) 토양특성(土壤特性) 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Jung-Kon;Son, Il-Soo;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 1993
  • To gain the basic informations on soil management practices by determination of the differences of soil genetic characteristics and the contents of soil moisture due to slope aspects of hilly land, this study was conducted at 1992 on sweet persimmon orchard soils derived from porphyry in southern of Korea. The results obtained were summarized as follows. The soils studied were belong to fine loamy family. The degree of soil development was greater in the north than other slope aspects and the solum thickness also the same. The soil chemical properties such as pH and exchangeable cations except for potassium were low generally in the orchards studied but the content of organic matter was lack in the summit and south aspect. The contents of Fe oxide and extractable Al were higher in the subsurface than surface. Fe, Al and clay indexes which indicate relative intensity of B horizon development were higher in the side slope than summit and the highest in the north slope. The rate of solum to B horizon was higher as about 1.5 for summit and west aspect which had thiner B horizon thickness compared to other aspect. North and west aspect had certainly more amount of soil water at drought season than other slope aspects and was lower the difference of soil water between the drought and wet seasons. Therfore, the soil management such as erosion control and irrigation at drought season should be practices differently due to slope aspect and soil chararteristics in the sloped land.

  • PDF

Study on Reduction Effect of the Non-Point Pollutants through Riparian Buffer Zones (비점오염부하 저감을 위한 수변완충지대의 효율적 조성 연구)

  • Choi, I-Song;Kim, Sung-Won;Jung, Sang-Jun;Woo, Hyo-Seop;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1793-1797
    • /
    • 2007
  • 한강 "수변구역"에서 비점오염물질의 공공수역 유입을 억제하기 위한 다양한 방법들 중에서 보편적이고 자연친화적인 방법은 다양한 생물의 서식공간이며, 동시에 본류로 유입되는 과정에서 수질을 정화시키는 수질개선 공간인 수변완충구역, 또는 지대를 설정하여 관리하는 것이다. 그러나 이러한 수변완충지대 효과 분석 및 설정에 관한 연구는 국내에서 아직 수행되지 않았다. 본 연구의 목적은 수변구역의 자정능력을 높이는 것은 물론 그 밖의 하천 연안에서 비점오염물질의 차단과 처리능력을 증진시키고 수변 생태계의 서식처 보전 및 복원을 위해서 수변완충지대의 수질정화 기술개발과 생물다양성을 창출하는 수변완충지대 조성 기법을 개발하는데 있다. 본 연구에서는 기존 수변완충지의 추가적인 조성과 보완, 시험완충지 생태구조 및 기능 기초조사, 시험완충지 오염부하 저감효과의 실험 및 분석, 수변완충지대 설치 구상 등의 연구를 수행하였다. 수행 지역은 한강수계 지역으로 남한강 수변인 경기도 양평군 병산리에서 실시하였으며, 잔디와 갈대, 갯버들, 혼합지역, 자연그대로의 상태(대조지역)의 5 구역으로 구분하였고, 깊이별로 샘플을 채취하여 유입수와 표면유출, 하부유출을 비교해 보았다. 연구 결과, 5 가지 구역 중 잔디 구역의 SS, T-N, T-P, TOC의 제거 효율이 각각 76.7%, 85.2%, 97.6%, 83.3%로 가장 좋은 오염물질 제거 효율을 보였으며, 깊이 별 분석에서는 표면유출에서 하부유출로 갈수록 월등한 효율을 보였다. 따라서 본 연구를 통하여 비점오염원에 대한 한강수계의 수자원 보호 효과를 기대할 수 있고, 수변완충지대의 조성, 유지관리기술의 개발을 통한 수변완충지대의 계획과 설계에 직접적인 기여를 할 수 있으며, 수변구역에 설치 가능한 Riparian Buffer Zone의 중요성과 효율성을 알려 현재 하상 저니 준설 및 폭기 위주의 사업에서 생태 공학적 복원을 적극 고려한 정화사업으로 확대 추진하고자 한다.해결책을 얻어내는 상호보완적인 결과를 추구한다. 그가 디자인하는 작품은 전형적인 이미지를 내포하지 않는다. 즉 그의 작품은 기존의 가치와 이념적인 것은 배제하고, 창의적인 개념을 도출하였다.형모서리는 건물 특화 성격이 강하므로 불가피할 경우 소형 액센트 광고 위치를 미리 벽면으로 할애하는 것이 경관 및 입면계획에 유리한 것으로 분석되었다. 불확실도 해석모형 등의 새로운 기능을 추가하여 제시하였다. 모든 입출력자료는 프로젝트 단위별로 운영되어 data의 관리가 손쉽도록 하였으며 결과를 DB에 저장하여 다른 모형에서도 적용할 수 있도록 하였다. 그리고 HyGIS-HMS 및 HyGIS-RAS 모형에서 강우-유출-하도 수리해석-범람해석 등이 일괄되게 하나의 시스템 내에서 구현될 수 있도록 하였다. 따라서 HyGIS와 통합된 수리, 수문모형은 국내 하천 및 유역에 적합한 시스템으로서 향후 HydroInformatics 구현을 염두에 둔 특화된 국내 수자원 분야 소프트웨어의 개발에 기본 토대를 제공할 것으로 판단된다.았다. 또한 저자들의 임상병리학적 연구결과가 다른 문헌에서 보고된 소아 신증후군의 연구결과와 큰 차이를 보이지 않음을 알 수 있었다. 자극에 차이가 있지 않나 추측되며 이에 관한 추후 연구가 요망된다. 총대장통과시간의 단축은 결장 분절 모두에서 줄어들어 나타났으나 좌측결장 통과시간의 감소 및 이로 인한 이 부위의 통과시간 비율의 저하가 가장 주요하였다. 이러한 결과는 차가운 생수 섭취가 주로 결장 근위부를 자극하는 효과를 발휘하는 것이 아닌가 해석된다. 이와 같은 연구결과를 통해 생다시마를 주원료로 개발된 생다시마차와 생다시마 음료가 만성 기능성 변비 증세를 개선하는 효능이 잠재적으로 있음을 확인하였다. 그러나 생약제재의 변비약 수준으로 변비 개선 효능을 증대하기 위해서는 재료 배합비의 개선이나 대장 운동기능을 향상시키는 유효성분의 보강 등이 필요하다는 점도 알 수 있었다.더불어 산화물질 해독에 관여하는

  • PDF