• Title/Summary/Keyword: 강우유출량

Search Result 1,563, Processing Time 0.021 seconds

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Cultivation to Forest in Jawoon-ri, Gangwon using the SATEEC ArcView GIS (SATEEC ArcView GIS를 이용한 홍천군 자운리 유역 임의 경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Kim, Ik-Jae;Mun, Yu-Ri;Jun, Man-Sig;Lim, Kyoung-Jae
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.73-95
    • /
    • 2009
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses(including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it would be expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha(30.83%) and 103.64 ha(67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it would be expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Dynamics of Inorganic Nutrients and Phytoplankton in Shihwa Reservoir (시화호에서 무기영양염과 식물플랑크톤의 동태)

  • Kim, Dong-Sup;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.109-118
    • /
    • 2000
  • The dynamics of inorganic nutrients and phytoplankton population were examined at eight stations of Shihwa Reservoir, which situated near the cities newly constructed and the industrial complex of West-sea in Korea, from January to December 1999. Among environmental factors, average concentration of $NH_4$, SRP and SRSi were $522.7\;{\mu}g\;N/l$, $9.8\;{\mu}g\;N/l$ and $0.26\;{\mu}g\;Si/l$, respectively. Water quality was extremely deteriorated by a great amount of pollutants load into inner reservoir after the event of rainfall. Nutrients concentration was suddenly decreased toward the lower part. While $NO_3$ concentration did not much varied among stations, but it was relatively high in winter season. Chlorophyll-a concentration was high at the upper part of the reservoir, with average of $37.2\;{\mu}/l$, and closely related to the fluctuation of $NH_4$, SRP and SRSi concentrations. The phytoplankton development in the water column was dominated by diatom (autumn), prasinoid (winter) and dinoflagellate (summer). Dominant phytoplankton were composed to Skeletonema costatum of diatom, Prorocentrum minimum of dinoflagellate, Chroomonas spp. of cryptomonad, Eutreptiella gymnastica of euglenoid and Pyramimonas spp. of prasinoid. The large bloom of phytoplankton at the upper zone of the Shihwa Reservoir after inflow of a seawater were consistently observed. In consequence, water quality management of the inlet stream was assessed to be very important and urgent.

  • PDF