• 제목/요약/키워드: 강우예측

검색결과 1,350건 처리시간 0.031초

홍수관리를 위한 농업용 저수지의 강우 활용방안 (Application of Rainfall Data of Agricultural Reservoir for Flood Management)

  • 이재남;신형진;최은혁;강문성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.36-36
    • /
    • 2020
  • 수공시설물의 홍수관리에 가장 중요한 정보는 강우자료로, 저수지 설계 및 물관리 업무에 기상청에서 제공하는 종관기상관측자료 등을 활용하고 있다. 농업용 저수지는 전국적으로 17,500여 개소로 많은 수가 분포되어 있지만, 유역내 강우관측자료의 미흡으로 저수지 인근에 위치한 강우관측소 자료만을 활용하고 있다. 저수지 유역면적은 다목적댐과 비교해 상대적으로 작아 티센법 등에 의한 평균우량값을 활용하기에 어려운 상황이다. 따라서 본 연구에서는 저수지 홍수관리에 있어 현재 제공되는 관측강우의 활용방안을 검토하였다. 이를 위해 강우자료의 활용방법으로 기존 농업용수 관리 실무에 활용하고 있는 방법과 유역 평균강우산방법의 활용성을 검토하였다. 강우자료는 기상포털개방자료에서 제공하는 기상청 지점강우, 동네실황, 초단기예측자료를 활용하였으며, 농어촌공사 홍수관리저수지를 대상으로 강우자료 활용방법에 따른 유역평균 강우값을 비교하였다. 본 연구결과는 강우예측정보를 활용한 저수지 홍수관리업무에 있어 현업부서의 강우정보 제공시스템 구축의 기초정보로 활용될 것으로 기대된다.

  • PDF

혼합분포를 이용한 호우피해 예측함수 개발 (Development of Heavy Rain Damage Prediction Function Using Mixed distribution)

  • 최창현;김종성;한대건;오승현;김형수
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2016년 정기학술대회
    • /
    • pp.236-237
    • /
    • 2016
  • 인류의 발전과 함께 재난관리에 대한 발전도 이루어져 왔다. 그러나 세계은행(World Bank)의 조사에 의하면 지난 30년간 전 세계적으로 자연재해로 인해 250만 명의 사람이 목숨을 잃었고, 피해금액은 4조 달러에 이르는 것으로 나타나, 아직 재난관리 체계에 많은 문제점이 있음이 드러났다. 특히, 우리나라는 각종 재난으로 인해 최근 10년(2006~2015)간 연 평균 약 5천억원의 피해액과, 약 1조 1천억원의 복구비를 지출하고 있다(국민안전처, 2016). 만약 재난 피해 발생 전 피해규모와 영향을 신속하게 추정할 수 있다면, 예방 및 대비 차원의 재난관리를 통해 피해액이 크게 감소될 것이다. 따라서 본 연구에서는 국내 재해의 65% 이상을 차지하고 있는 호우피해를 대상으로, 피해 예측함수를 개발하였다. 한강 권역을 본 연구의 대상지역으로 선정하였고, 재해연보자료를 조사하여 대상지역의 호우피해 발생 현황 및 피해액을 분석하였다. 또한 대상지역의 강우자료를 확보하기 위해 종관기상관측소의 강우자료를 확보하였다. 강우자료를 이용하여 지속시간별(1~24시간) 최대강우 자료와 재해기간별 선행강우(1~5일) 자료, 그리고 재해기간의 총 강우량 자료를 산출하였다. 이를 독립변수로 하여 재해기간의 시설물별 피해액과의 분석을 통해 호우피해 예측함수를 개발하였다. 호우피해 예측함수는 피해액을 로지스틱회귀분석을 통해 호우피해액이 큰 범위와 호우피해액이 작은 범위로 분류한 혼합분포를 이용하여 개발하였다. 본 연구는 효과적인 재해 관리체계를 확립 하고, 재해예방 및 대비 단계의 기초 자료로 사용될 수 있을 것으로 기대된다.

  • PDF

댐 일유입량 예측을 위한 데이터 전처리와 머신러닝&딥러닝 모델 조합의 비교연구 (Comparative Study of Data Preprocessing and ML&DL Model Combination for Daily Dam Inflow Prediction)

  • 조영식;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.358-358
    • /
    • 2023
  • 본 연구에서는 그동안 수자원분야 강우유출 해석분야에 활용되었던 대표적인 머신러닝&딥러닝(ML&DL) 모델을 활용하여 모델의 하이퍼파라미터 튜닝뿐만 아니라 모델의 특성을 고려한 기상 및 수문데이터의 조합과 전처리(lag-time, 이동평균 등)를 통하여 데이터 특성과 ML&DL모델의 조합시나리오에 따른 일 유입량 예측성능을 비교 검토하는 연구를 수행하였다. 이를 위해 소양강댐 유역을 대상으로 1974년에서 2021년까지 축적된 기상 및 수문데이터를 활용하여 1) 강우, 2) 유입량, 3) 기상자료를 주요 영향변수(독립변수)로 고려하고, 이에 a) 지체시간(lag-time), b) 이동평균, c) 유입량의 성분분리조건을 적용하여 총 36가지 시나리오 조합을 ML&DL의 입력자료로 활용하였다. ML&DL 모델은 1) Linear Regression(LR), 2) Lasso, 3) Ridge, 4) SVR(Support Vector Regression), 5) Random Forest(RF), 6) LGBM(Light Gradient Boosting Model), 7) XGBoost의 7가지 ML방법과 8) LSTM(Long Short-Term Memory models), 9) TCN(Temporal Convolutional Network), 10) LSTM-TCN의 3가지 DL 방법, 총 10가지 ML&DL모델을 비교 검토하여 일유입량 예측을 위한 가장 적합한 데이터 조합 특성과 ML&DL모델을 성능평가와 함께 제시하였다. 학습된 모형의 유입량 예측 결과를 비교·분석한 결과, 소양강댐 유역에서는 딥러닝 중에서는 TCN모형이 가장 우수한 성능을 보였고(TCN>TCN-LSTM>LSTM), 트리기반 머신러닝중에서는 Random Forest와 LGBM이 우수한 성능을 보였으며(RF, LGBM>XGB), SVR도 LGBM수준의 우수한 성능을 나타내었다. LR, Lasso, Ridge 세가지 Regression모형은 상대적으로 낮은 성능을 보였다. 또한 소양강댐 댐유입량 예측에 대하여 강우, 유입량, 기상계열을 36가지로 조합한 결과, 입력자료에 lag-time이 적용된 강우계열의 조합 분석에서 세가지 Regression모델을 제외한 모든 모형에서 NSE(Nash-Sutcliffe Efficiency) 0.8이상(최대 0.867)의 성능을 보였으며, lag-time이 적용된 강우와 유입량계열을 조합했을 경우 NSE 0.85이상(최대 0.901)의 더 우수한 성능을 보였다.

  • PDF

국지적 산사태 발생 예보를 위한 레이더 자료의 활용성 평가 (Evaluation of the Application of Radar Data for Local Landslide Warning)

  • 최윤석;최천규;김경탁;김주훈
    • 한국습지학회지
    • /
    • 제15권2호
    • /
    • pp.191-201
    • /
    • 2013
  • 우리나라의 산사태는 여름철 집중호우 시에 주로 발생하며, 강우는 산사태 발생에 결정적 영향을 미치는 요소이다. 본 연구에서는 산악지역에서 국지적으로 발생하는 산사태의 예측을 위한 레이더 강우자료의 활용성을 평가하였다. 2006년 7월에 발생한 인제지역 산사태를 대상으로 레이더 자료를 이용하여 유역내 강우 공간분포의 시간적 변화를 분석하였으며, 산사태 발생지와 산사태 발생 기간에서의 강우특성을 평가하였다. 연구결과 레이더 강우장을 이용하는 것은 기존의 지점강우를 이용하는 방법에 비해 국부적으로 발생할 수 있는 산사태를 정밀하게 예측할 수 있는 것으로 나타났다.

강우 및 지점특성치를 이용한 계절형 다변량 시계열 모형 구축 평가 및 비교 (Evaluation and Comparison of seasonal multivariate time series model construction with rainfall and site characteristics)

  • 김태림;최원영;신홍준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2015
  • 수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.

  • PDF

LSTM 기법을 이용한 도림천 유역의 침수 예측 (Flood Predicion of Dorimcheon Stream basin using LSTM)

  • 장세동;김병현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.513-513
    • /
    • 2023
  • 최근 이상기후의 영향으로 국지성 및 집중호우로 인한 침수 피해가 증가하고 있다. 도시유역의 홍수는 사회적·경제적으로 큰 손실을 야기할 수 있어 실제 호우에 대한 침수 양상을 신속하게 예측하는것은 매우 중요하다. 이로 인해 침수 해석에 대한 결과를 빨리 제공할 수 있는 기계학습을 기반으로 한 도시 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM(Long Short-Term Memory) 신경망은 기존 RNN(Recurrent neural network)이 가지고 있는 장기 의존성 문제를 해결하기 위해 고안된 모델으로 시계열 데이터에 대한 예측능력이 뛰어나다는 장점을 가지고있다. LSTM 신경망은 강우에 대한 격자별 침수심을 예측하기 위해 사용되었으며, 입력자료로 2000~2022년도에 걸친 도림천 유역의 침수피해를 야기한 지속시간 6시간 AWS(Automatic Weather System) 관측 강우 자료를 사용하였고 목표값으로 수집된 도림천 유역의 강우자료를 이용하여 SWMM(Storm Water Management Model)의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 사용하였다. 연구유역의 SWMM 배수 관망 입력자료의 정확성을 높이기 위해 서울시 하수관로 수위 현황 자료를 활용하여 매개변수 조정을 실시하였으며, 하수관로의 실측 수위와 모의 수위를 일치시켰다. LSTM 신경망을 이용하여 격자별로 예측된 침수심 데이터를 시각화하여 침수흔적도와 비교하였다.

  • PDF

하천 유량 예측 시스템 개선을 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로 (Assessing the Benefits of Incorporating Rainfall Forecasts into Monthly Flow Forecast System of Tampa Bay Water, Florida)

  • 황세운;마티네즈 크리스;아세파 터루소
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.127-135
    • /
    • 2012
  • 지속가능한 수자원 관리 시스템을 위한 수문 예측은 안정적인 장단기 용수 공급에 있어 중요한 과제이며, 이를 위해는 다양한 기후 정보를 이용한 시스템의 평가가 우선되어야 한다. 본 연구에서는 미국 플로리다 템파 지역의 연간 월 강우와 하천 유량 예측을 위해 본 시험지역에 운용되고 있는 유량 모의 시스템 (flow modeling system, FMS)을 소개하고, 관측된 강우 자료를 '최적 예측 강우 시나리오 (the best rainfall forecast)'로 가정하여 FMS의 기후 예측 정보에 대한 활용성을 평가하였다. 연구 결과, 기본적으로 FMS에 의해 예측된 월 강우량 앙상블의 중앙값이 관측 강우량을 잘 재현하는 것으로 나타났다. 강우 예측 모델 입력자료로 사용되는 초기 월 강우량은 2개월까지의 예측에 간섭하며 이 후 예측치는 동일한 범주로 수렴하여 관측자료로 부터 추정된 통계치에 의존하는 것으로 나타났다. 이는 예측 모델이 최대 2개월간의 예측 효용성을 가짐을 의미한다. 월 강우량 앙상블을 이용하여 예측된 하천 유량 앙상블은 4-6개월까지의 예측 효용성을 보였다. 예측된 강우량 대신 실제 관측 월강우 시계열 자료를 유량 예측을 위한 강우 입력자료로 적용한 결과, 예측된 유량의 범주가 현저히 감소하였으며 예측의 불확실성이 감소하는 것으로 나타났다. 본 연구 결과는 시험 지역에 대한 신뢰도 높은 강우 예측 자료의 확보가 기존의 수문 예측 시스템 개선에 기여할수 있다는 것을 보여준다.

회귀기법을 이용한 도시홍수위 예측모형의 개발 (Development of Urban Flood Water Level Forecasting Model Using Regression Method)

  • 정동국;이범희
    • 한국수자원학회논문집
    • /
    • 제43권2호
    • /
    • pp.221-231
    • /
    • 2010
  • 실시간 홍수예측모형의 구성에서 장래 강우 양상(지속기간, 강우강도 등)에 대한 가정으로 인하여 홍수예측의 신뢰성을 높이기 어려웠다는 점을 해결하기 위하여 현재까지의 강우, 수위 및 상류지역의 수위를 기반으로 장래 수위를 예측할 수 있는 회귀모형을 구성하였다. 대상유역인 대전광역시의 도심하천 구간에서 각 수위 및 강우관측소들 간의 자료들을 활용하여 최대 2시간 후의 수위변화를 예측할 수 있는 모형을 구성하였다. 각각의 선행시간에 대하여 예측한 결과 실체 실측치를 예측하는 과정에서 표준편차가 최대 5 cm, 평균 표준편차가 1~4 cm에 머무르고 있는 점 및 결정계수의 값이 대부분 0.95 이상을 나타내는 점 등을 살펴보면 전체적으로 예보모형이 안정적으로 운영이 되고 있음을 알 수 있었다. 다만 본 회귀모형의 특성이 유역반응의 정상성을 가정함을 감안한다면 어느 정도 기간까지 정상성을 유지할 수 있는가의 문제는 추후 연구가 더욱 필요할 것으로 보인다.

호주에서의 ECMWF 계절내-계절 수문기상 예측치 평가 (Evaluation of ECMWF subseasonal-to-seasonal (S2S) hydrometeorological forecast across Australia)

  • 박종민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.268-268
    • /
    • 2023
  • 전 지구적 급격한 기후변화로 인해 수문기상인자들의 비선형적 변동성이 발생함과 동시에 가뭄, 홍수와 같은 수재해의 발생빈도 및 강도가 증가하고 있는 추세이다. 이에 따라, 세계의 유수기관 (NASA, ESA 등)에서는 대기모형과 해양 모형의 결합 및 수치해석적 접근법을 활용하여 계절내-계절 (Subseasonal to seasonal; S2S) 예측치를 생산하여 제공하고 있다. 이에 따라, 본 연구에서는 European Centre for Medium-Range Weather Forecast (ECMWF)에서 산정되는 수문기상인자 (강수량, 증발산량 및 유출량)에 대한 정확도를 평가하고자 한다. 연구지역으로는 다양한 기후대 및 토지 피복으로 구성되어 있으며, El-Nino-Southern Oscillation (ENSO), Indian Ocean Diapole (IOD)와 같은 기후 현상이 빈번히 발생하는 호주지역을 대상으로 연구를 수행하였다. ECMWF S2S 자료에 대한 통계적 검증은 1) 지점 기반 관측치와 더불어 2) 물수지 모델 기반 수문 추정치 (The Australian Water Resources Assessment Landscape Model; AWRA-L)와 비교하였다. 연구 결과 S2S 강우 및 증발산량 산정치의 경우 비교적 짧은 예측기간(약 2주)에서 상대적으로 높은 상관관계 (R=0.5~0.6)와 낮은 편차 (강수량 = 0.10 mm/day, 증발산량 = 0.21 mm/day)를 나타내었다. 유출량의 경우, 강우 및 증발산량에 비해 상대적으로 낮은 정확도를 나타내었으며, 예측 기간이 길어짐에 따라 불확실성이 상당히 높아지는 것으로 확인되었다. 이는, S2S 계산과정에서 강우 및 증발산량 뿐만아니라 지표 유출로 도달하기 전까지의 수문기상인자들의 불확실성이 모두 모여 유출량의 불확실성이 높아진 것으로 확인할 수 있었다. 계절적 검증에서는, 강우 및 증발산량 모두 여름철에 높은 상관관계를 나타내었지만 불확실성은 상대적으로 큰 값을 나타내었다. 자세한 분석을 위해, 공간적인 불확실성을 분석해본 결과 ECMWF S2S가 매우 습윤하거나 건조한 지역에서 수문기상인자를 예측하는데 있어 한계성이 나타난 것을 확인하였다. 본 연구를 토대로, 추후 S2S 예측치에 대한 보정과 더불어 미래의 수재해 발생 위험도에 대한 정보를 획득하는데 적용될 수 있을 것으로 판단된다.

  • PDF

확률론적 홍수예측을 위한 불확실성 분석 (Uncertainty Analysis for the Probabilistic Flood Forecasting)

  • 이경태;김영오;강태호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF