• Title/Summary/Keyword: 강우생성모형

Search Result 186, Processing Time 0.03 seconds

Development of hybrid stochastic model for rainfall generation considering rainfall inter-annual variability (연간 강우 변동성을 고려한 혼합 추계 강우 생성 모형의 개발)

  • Park, Jeong Ha;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.11-11
    • /
    • 2018
  • 본 연구에서는 1시간부터 1년 단위의 강우 특성들을 잘 모의하는 혼합 추계 강우 생성 모형을 개발하였다. 본 모형의 가상 강우 생성 과정은 4단계로 이루어진다. 첫 단계에서 Seasonal ARIMA 모형을 통하여 시계열 특성을 반영한 월 강우를 생성한다. 두 번째 단계는 생성된 월 강우에 해당하는 일 단위 이하의 강우 통계치 세트를 생성하는 것이며, 통계치간 상관관계를 통해 평균, 표준편차, 자기상관 계수, 무강우 확률을 생성한다. 생성된 통계치 세트는 세 번째 단계에서 Modified Bartlett-Lewis Rectangular Pulse (MBLRP) 모형의 6개의 매개변수를 보정하는데 사용되며, 마지막으로 MBLRP 매개변수 세트를 통해 가상 강우 시계열을 생성한다. 위 모형을 통해 미국 동부 지역 29개 강우 관측소에 대하여 200년 길이의 가상 강우를 생성하였으며, 그 결과 시 단위부터 연 단위까지 강우의 1차, 2차 통계치 및 무강우 확률을 성공적으로 재현하였다. 또한 기존 MBLRP 모형에 비하여 극한 강우 사상을 재현하는 능력이 향상되었다. 빈도분석 결과를 통하여 MBLRP 모형이 재현기간에 따라 10%에서부터 40%까지 극한 사상을 과소 추정한 반면, 본 모형에서는 20% 이내의 값을 나타내었다.

  • PDF

Comparison of rainfall-based and model-bsed runoff ensemble members (강우기반 유출앙상블과 모형기반 유출앙상블의 비교 및 평가)

  • Kang, Minseok;Na, Wooyoung;Kim, Gildo;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.328-328
    • /
    • 2020
  • 본 연구에서는 강우앙상블 멤버를 입력자료로 한 강우기반 유출앙상블 멤버와 관측 강우자료를 입력자료로 한 모형기반 유출앙상블 멤버를 생성하고 각 유출앙상블 멤버의 정확도를 비교·평가하였다. 본 연구에서는 강우앙상블 멤버 생성을 위해 서울 지역을 대상으로 강우장 이동 모의에 필요한 모의 격자망을 구축하였다. 다음으로 최근 10년 동안 발생한 37개 호우사상의 관측자료를 토대로 격자별 특성방향을 결정하고 특성방향의 통계치로부터 유도된 베타분포를 기반으로 강우앙상블 멤버를 생성하였다. 유출앙상블 멤버는 대한민국 서울에 위치한 구로1 빗물펌프장 배수유역을 대상으로 shot noise process 기반 강우-유출모형을 이용하여 생성하였다. 강우-유출모형 매개변수의 난수 생성을 위해서 감마분포를 이용하였다. 2017년과 2018년 발생한 호우사상을 대상으로 강우기반 및 모형기반 유출앙상블을 생성한 결과, 강우의 방향성을 조정하여 생성한 강우기반 유출앙상블의 정확도가 더 높은 것으로 나타났다.

  • PDF

Development of Poisson cluster generation model considering the climate change effects (기후변화 영향을 고려한 포아송 클러스터 가상강우생성모형 개발 및 검증)

  • Park, Hyunjin;Han, Jaemoon;Kim, Jongho;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.189-189
    • /
    • 2015
  • 본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.

  • PDF

A research on the generation of future rainfall scenarios using stochastic rainfall generation model (추계 강우 생성 모형을 통한 미래 강우 시나리오 생성 방법 연구)

  • Park, Jeong Ha;Park, Hyun Jin;Kim, Dong Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.336-336
    • /
    • 2019
  • 기후변화는 미래 수문 순환 및 수자원에 악영향을 미칠 수 있는 가장 잠재력이 큰 요인이다. 특히 강우량의 변동은 가뭄 홍수를 더욱 양극화 할 수 있으며, 지역별 수문 순환에 막대한 영향을 주기 때문에 수자원 관리 계획 수립 시 기후변화 요소를 필히 고려해야 한다. 추계 강우 생성 모형은 상대적으로 적은 매개변수를 이용하여 긴 강우 시나리오를 생성할 수 있는 장점을 바탕으로 기후 변화와 결합하여 기후 변화 영향 평가에 활발하게 활용되고 있다. 본 연구에서는 General Circulation Model(GCM)으로 모의한 미래 월강우 자료에서 기후변화에 따른 강우량의 변화를 변동 인자(Change factor)로 정량화하고, 강우생성모형인 THM(The hybrid model)에 적용하여 미래 강우 시나리오를 모의하고자 한다. 먼저 기상청 28개 종관기상관측소를 대상으로 강우생성모형의 성능을 평가 하였고, 그 결과 집성기간 1시간-1일에 해당하는 강우의 통계치를 성공적으로 재현함을 확인하였다. 본 연구에서 생성된 미래 강우 시나리오는 1) 기후변화를 고려하였으며, 2) 시 단위의 고해상도 강우자료이며, 3) 수문 모의에 필요한 만큼 충분히 길게 생성할 수 있기 때문에 미래 수자원 관리 계획 및 수문 분석에 효과적으로 활용될 것이다.

  • PDF

Development of Stochastic Rainfall Downscaling using Bayesian Neyman-Scott Rectangular Pulse Model(NSRPM) (Bayesian NSRP 모형을 이용한 추계학적 Downscaling 기법 개발)

  • Kim, Jang-Gyeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.9-9
    • /
    • 2018
  • 추계학적 강우생성모형 중 포아송 클러스터(Poisson Cluster) 모형은 단일지점에 대하여 시간강우량의 관측연한 문제점을 해결하기 위한 강우모형으로 강우 단계별 계층적 구조를 이해하는데 유용한 모형이다. 특히 강우 특성을 계절, 지역 등과 같이 비교하는 기준에 따라 5~6개의 비교적 적은 매개변수들로 모의 강우시계열을 생성할 수 있다는 점에서 장기간 강우분석에 필요한 관측연한 문제를 보완할 수 있다. 그러나 매개변수 최적해가 수렴되지 않는 사례가 많고, 매개변수들이 강우의 물리적 특성을 반영하는 것에 비해 내포된 불확실성에 관한 연구는 미흡하다. 본 연구에서는 포아송 클러스터 강우생성모형 중 Neyman-Scott Rectangular Pulse(NSRP) 모형을 Bayesian 모형과 연계한 Bayesian NSRP 모형을 개발하여 매개변수간 물리적 상관성을 고려한 최적화 기법을 개발하였다. Bayesian 모형은 물리적 범위가 다른 매개변수간의 결합확률분포를 산정하여 사후분포(posterior)를 추정하므로 매개변수 최적화와 불확실성 정량화 문제를 동시에 해결할 수 있다. 최종적으로 Bayesian NSRP 모형에 기후변화 시나리오의 통계적 특성을 고려한 시간단위 강우시계열 생성 모의 기법의 활용 가능성을 평가하고자 한다.

  • PDF

Areal Reduction Factor according to Storm Scale (일단위의 호우규모에 따른 면적감소계수)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.273-273
    • /
    • 2012
  • 최근 기후변화에 따른 수자원 평가를 위해 장기유출모형이 적극 활용되고 있다. 또한, 장기유출모형의 입력자료인 기후변화 시나리오를 적용한 수문학적 기상자료 생성을 위해 추계학적 기상모형(Stochastic weather generator)이 이용되고 있다. 이러한 장기유출모형의 수문학적 프로세스, 기상모형의 결과는 일단위에 기초하고 있다. 특히, 입력자료로 이용되는 강우량은 대상유역 단위의 면적강우량 산정, 즉 실제 강우의 공간적 특성이 반영된 강우생성이 무엇보다 중요한 것으로 판단된다. 따라서, 추계학적 기상모형을 이용하여 강우생성시, 강우의 공간적 특성이 고려된 호우(Storm) 생성이 중요하다. 이러한 호우생성을 위해 호우규모에 따른 면적감소계수에 대한 분석이 요구된다. 따라서, 본 연구에서는 충주댐 유역을 대상으로 일단위의 동시강우 자료를 수집하여, 호우규모에 따른 면적감소계수의 특성을 파악하여 논의하였다.

  • PDF

Generation and Combination of Rainfall Ensemble using Artificial Neural Network Model (인공신경망 모형을 활용한 강우 앙상블 생성 및 조합)

  • Kim, Taereem;Shin, Ju-Young;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.497-497
    • /
    • 2018
  • 복잡한 기상조건 하에서 강우의 예측은 수문 기상 분야에서 필수적인 과정이라 할 수 있다. 특히 월 단위의 강우 예측은 장기적인 수자원 관리 및 계획 수립 시 매우 중요한 기준이 되기 때문에 보다 정확하고 신뢰도 있는 예측을 필요로 하고 있다. 이를 위해 전 지구적 기후 변동의 양상을 수치화 하여 나타낼 수 있는 기상인자의 활용이 활발해지고 있으며 다양한 모형을 기반으로 한 강우 예측이 수행되고 있다. 최근에는 인공지능 기법을 활용한 인공신경망 모형의 적용이 활발해짐에 따라 높은 예측력을 바탕으로 강우 예측에 대한 연구가 이루어지고 있지만 초기 가중치의 무작위성 또는 과적합으로 인한 문제도 함께 나타나고 있다. 본 연구에서는 인공신경망 모형의 활용성을 높이고 신뢰성을 확보하기 위한 강우 예측을 수행하고자 하였다. 이를 위해 다양한 기상인자를 활용하여 인공신경망 모형을 위한 정보를 구축하고 인공신경망 모형을 통해 생성되는 결과로부터 단일 예측이 아닌 앙상블 예측을 활용함으로써 강우 앙상블을 생성하고 조합하였다. 그 결과 인공신경망 모형을 통한 단일 예측보다 앙상블을 통한 예측으로 안정적이고 정확한 예측 결과를 산정할 수 있었으며 기존에 인공신경망 모형을 통한 예측의 문제점을 보완할 수 있었다.

  • PDF

Gridded Rainfall Data Processing Using GRM Tools (격자형 강우자료 처리를 위한 GRM Tools의 활용)

  • Choi, Yun-Seok;Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.268-268
    • /
    • 2011
  • 최근 들어 격자 기반의 분포형 유출 모형에 대한 활용이 증가하면서 격자형 강우자료의 활용을 위한 전처리 과정의 중요성 또한 증대되고 있다. 격자 기반의 수문모형에서 활용하기 위한 격자형 강우자료는 유역 격자와 동일한 위치 및 격자 크기를 가진다. 격자형 강우자료는 텍스트 파일 혹은 GIS 레이어로 저장되며, 강우 기간에 대한 시계열 정보를 나타내므로 일반적으로 수십내지 수천 개의 파일로 구성된다. 본 논문은 격자 기반의 다수의 분포형 강우 파일을 사용목적에 맞게 생성 및 가공하기 위한 GRM(Grid based Rainfall-runoff Model) Tools의 활용에 대해서 기술한다. GRM Tools는 격자 기반의 물리적 분포형 강우-유출 모형인 GRM에서 자료 처리를 위해 제공하는 도구이다. GRM Tools에 포함된 기능 중 강우자료의 처리를 위한 기능은 지점 강우자료를 이용한 분포형 강우자료 생성, 레이더 강우자료의 보정, 기상위성 자료를 이용한 강우 생성, 임의 격자 및 유역 평균 강우량 시계열 자료 추출, 텍스트 파일 변환 및 처리 등이다. GRM Tools 에서는 이와 같은 강우자료 처리 작업을 다수의 파일에 대해서 일괄적으로 수행함으로써 격자 기반의 분포형 강우자료 생성 작업을 효율적으로 수행할 수 있다.

  • PDF

Analysis of the suitability of optimization methods for parameter estimation of stochastic rainfall model. (추계학적 강우모형의 모수 추정을 위한 최적화 기법의 적합성 분석)

  • Cho, Hyungon;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.327-327
    • /
    • 2018
  • 돌발홍수, 집중호우 등 강우가 발생 원인되는 자연재해에 효과적으로 대응하기 위한 연구가 활발히 이루어지고 있으나 강우의 시공간 변동성과 발생과정의 복잡한 물리과정으로 인해 강우 추정에 한계를 가진다. 일반적으로 강우 추정은 물리적, 추계학적 모형을 이용하며 추계학적 모형의 점과정(point process)을 이용하여 강우를 생산한다. 추계학적 강우 모형은 관측 강우의 시간 스케일, 강우발생 빈도, 강우 강도 등 강우 구조의 특성을 반영 할 수 있다는 장점을 가지고 있으나 생산되는 강우의 구조가 추정되는 매개변수에 크게 의존한다는 점에서 실제 강우에 적합한 매개변수 추정이 중요하다. 본 연구에서는 낙동강 유역내에 있는 20개의 강우관측 지점을 대상으로 1973년-2017년까지의 강우 관측자료를 수집하였으며 추계학적 강우생성 모형으로 점과정을 이용하는 추계학적 강우생성 모형인 NSRPM(Neymann-Scott rectangular pulse model)을 선정하였다. NSRPM모형의 매개변수를 추정하기위한 최적기법으로 DFP(Davidon-Fletcher-Powell), GA(genetic algorithm), Nelder-Mead, DE(differential evolution)를 이용하여 추정된 매개변수의 적합성을 분석하고 지역특성을 고려한 매개변수 추정 기법을 제시하였다. 추정된 모형의 매개변수를 분석한 결과 DE와 Nelder-Mead 기법이 높은 적합성을 보였으며 DFP, GA기법이 상대적으로 낮은 적합도를 보였다.

  • PDF

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events (극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가)

  • Kim, Dong-Kyun;Kwon, Hyun-Han;Hwang, Seok Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.773-784
    • /
    • 2014
  • This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.