• Title/Summary/Keyword: 강우모형

Search Result 2,047, Processing Time 0.048 seconds

Physical based Development of 2-Dimensional Distributed Rainfall-Runoff model (물리적 기반의 2차원 분포형 강우-유출모형의 개발)

  • Kang, Boo-Sik;Moon, Soo-Jin;Kim, Jin-Gyeom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.257-257
    • /
    • 2011
  • 현업에서 사용하는 유출해석 기본이론은 연속방정식과 운동방정식으로서 운동파가정(kinematic wave analogy)을 기반으로 한 집중수문모형(lumped hydrologic model)에 의하여 수행되고 있지만 집중형 모형은 한 매개변수에 여러 가지의 물리적 과정을 개념화하여 담고 있기 때문에 유출과정에 대한 섬세한 모형화의 제약으로 인하여 유역고유의 매개변수값을 찾기가 쉽지 않은 단점을 가지고 있다. 이에 본 연구에서는 물리적 기반의 2차원 분포형 강우-유출모형을 개발하고자 하며 이는 완전분포형 수문동역학적 모형으로 지표흐름과 침투과정, 기저유출과 관련된 과정을 모의한다. 본 모형은 공간적으로 변화하는 침투량과 소규모 및 대규모의 지형학적 특성을 사용하는 St. Venant 방정식을 사용하고 개발될 모형은 모든 스케일에서의 수심과 유량을 계산할 수 있으며 Richard 방정식(또는 선택적으로 Green-Ampt 방정식 채택)을 이용하여 정밀한 침투량 모의가 가능하다. 또한 레이다등의 고해상도 강우관측자료를 지점자료와 합성하여 입력자료로 사용할 수 있도록하고자 하며 강우-유출모형에 다목적댐이나 보등에서의 유량조절효과를 반영하고, 다목적댐군에서의 연계운영모의가 가능케 함으로서 현업의 운영자들이 실무에서 실질적으로 활용할 수 있는 형태의 모형을 개발하고자 한다. 이는 국내에서의 2차원 분포형 강우-유출모형을 자체 개발함으로서 연구역량을 제고하고, 국내 현업기관에서의 분포형 모형기반의 홍수모니터링 및 전망시스템의 확산에 기여할 것으로 예상된다.

  • PDF

Application study of conceptual rainfall-runoff models for regionalization of Miho catchment, Chungbuk (미호천 상류유역의 지역화 연구를 위한 개념적 강우유출 모형의 평가)

  • Lee, Hyo-Sang;Choi, Ho-Hoon;Joo, Jae-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.285-285
    • /
    • 2011
  • 우리나라의 하천 상류지역의 유역들은 신뢰할 수 있는 수문자료의 미비로 인하여, 관행적으로 모형의 변수를 산정하여 강우유출모형을 적용하고 있다. 그러나 상류지역의 빈번한 홍수 피해 및 수자원관리의 문제발생 등으로 인하여 이러한 상류지역의 중소유역의 신뢰할 수 있는 홍수량산정 방법이 요구되고 있다. 이는 영국의 국가 홍수량 산정 표준방법(Flood Estimation Handbook)과같이 강우유출모형의 지역화를 통하여 해결 할 수 있다. 지역화를 위한 강우유출모형의 선정을 위하여 9개의 개념적 강우유출모형을 충청북도 미호천 상류 7개의 소유역에 적용하여 모형의 성능을 평가하였다. 이는 유효우량 산정을 위한 3개의 개념적 토양저류함수 모형(Soil Moisture Accounting: Modified Penman Type Model(MP), Catchment Wetness Index Model(CWI), Probability Distribution Model(PDM))과 3개의 유역유출을 위한 3개의 개념적 유출모형(Routing: 2-Conceptual Reservoir Model(2PAR), 3-Conceptual Reservoir Model(3PAR), Marcropore Model(2PMP))의 조합으로 총 9개의 모형을 검토하였다. 이를 검정기간(2004.01.01-2007.12.31) 과 검증기간(2008.01.01-2009.12.31)의 장단기 유출성능을 Nash Sutcliffe Efficiency 로 평가한 결과, 시간 단위의 단기모의에서는 CWI-2PMP와 PDM-2PMP모형이, 일 단위의 장기모의에서는 CWI-3PAR와 PDM-2PMP가 우수한 성능을 보이고 있다. 향후 금강 상류유역의 기본 강우유출모형으로 PDM-2PMP모형을 선정한다.

  • PDF

A study on application of GPU-accelerated kinematic wave rainfall-runoff model (GPU 가속 운동파 강우유출모형의 적용 연구)

  • Kim, Boram;Yun, Gwan Seon;Kim, Hyeong-Jun;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.323-323
    • /
    • 2020
  • 그래픽 처리 장치(Graphic Processing Unit: GPU)는 그래픽 처리 작업에 특화된 다수의 산술논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 본 연구는 GPU 가속 운동파모형을 실제 유역에 적용하여, GPU 가속 운동파 강우유출모형 결과에 대한 정확성과 연산 소요 시간에 대한 효율성을 확인하였다. GPU 가속 운동파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시키기 위해 CUDA 포트란을 이용하여 개발되었다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되었고, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 운동파모형을 이용하여 금강의 미호천 유역에서 발생하는 강우유출현상을 모의 하였고, 동일한 유한체적법을 이용한 CPU(Central Processing Unit) 기반의 강우유출모형과 비교하였다. 그 결과 GPU 가속모형의 결과는 미호천 유역 하류단에서 관측한 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반의 강우유출모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

A Hybrid Approach for Rainfall-Runoff Prediction in Yongdam Dam Basin in Korea (용담댐 유역의 강우-유출 예측을 위한 하이브리드 접근법)

  • Yeoung Rok Oh;Kyung Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.70-70
    • /
    • 2023
  • 강우 발생 중 용담댐 상류로부터 용담댐으로 유입되는 유입량을 정확하게 예측하는 것은 하류 지역의 홍수 피해를 최소화하기 위한 댐의 적절한 운영에 필수적이다. 물리 기반 강우-유출 시뮬레이션 모형은 물리적 과정의 이해를 바탕으로 홍수 예측 분야에 광범위하게 사용되고 있다. 그러나 복잡한 물리 과정을 완벽히 이해하는 것은 거의 불가능하므로 다양한 가정 조건들을 이용해 복잡한 과정을 단순화하여 계산해야 하는 한계가 존재한다. 최근에는 방대한 데이터의 축적과 컴퓨터 능력의 향상으로 인해 데이터 기반 모형이 다양한 실무 문제를 해결하는 데 강력한 도구로 활용되고 있을 뿐 아니라 시뮬레이션 및 예측 등에도 다양하게 이용되고 있다. 그러나 예측 시간이 늘어날수록 입력자료로 이용되는 과거 자료와 출력자료로 이용되는 미래자료와의 상관관계가 줄어들어 모형의 성능이 저하된다. 따라서 본 연구에서는 용담댐의 시간당 유입량을 예측하기 위해 물리 기반 강우-유출 모형과 오차 보정 모형을 결합한 하이브리드 접근 방식을 제안한다. 물리 기반 강우-유출 모형으로는 HEC-HMS 모형을 사용하였으며, 오차 보정 모형에는 기계학습 모형인 인공신경망(Artificial Neural Network, ANN) 모형을 사용하였다. HEC-HMS 모형, ANN 및 하이브리드 모형(HEC-HMS + ANN)의 성능을 비교하기 위해 20 개의 홍수 사상을 모형 구축 및 검증에 사용하였다. 그 결과 하이브리드 모형은 예측 시간이 늘어날수록 HEC-HMS 및 ANN 모형보다 우수한 성능을 나타냈다. 물리모형에 기계학습을 이용한 오차 보정 절차를 통합한 경우 홍수 유출 예측의 정확성이 향상되었다. 다양한 모형의 비교 결과 본 연구에서 적용한 하이브리드 모형이 물리기반 강우-유출 모형 및 순수 기계학습 모형보다 우수한 성능을 보여줌으로써, 하이브리드 모형은 물리모형과 순수 기계학습 모형의 단점들을 보완하는데 이용할 수 있음을 나타낸다. 이 연구의 주요 목적은 강우-유출 시물레이션 모형의 오차 보정 기술에 대한 더 깊은 이해를 제공하는데 있다.

  • PDF

Spatial Adjustment of Rainfall using Kriging Method and Application of Distributed Model (크리깅 기법을 이용한 강우의 공간보정과 분포형 모형의 적용)

  • Kim, Jin-Sung;Rim, Hae-Wook;Um, Myoung-Jin;Kim, Won-Il;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.130-134
    • /
    • 2008
  • 제주도는 표고가 높은 산악지형으로 이루어져 있으며, 산악지형에서의 강수 발생일수와 강수량 값은 평지보다 월등히 높으므로 수자원 설계시 표고에 따른 강우 보정을 실시한다. 그러나 현재 실무에서 적용되고 있는 시우량 자료를 이용한 표고와 연강우량의 관계에 따른 보정 방법은 여러 문제점을 야기시키고 있다. 이에 본 연구에서는 크리깅 기법을 이용하여 새로운 강우보정 방법을 제시하였으며, 격자형 강우보정계수를 산정하여 보정된 강우를 분포형 모형에 적용하였다. 제주도내 17개 강우관측소 및 제주 재난안전대책본부 41개 관측소의 강우자료를 이용하여 공동크리깅을 수행하였고, 격자 형태의 강우보정계수를 산정하였다. 제주 관측소의 강우자료로 확률강우량을 산정하여 강우보정을 하였고, 분포형 모형에 적용하여 유출량을 산정하였다. 또한, 기존 고도보정 방법 및 HEC-HMS 모형으로 산정된 유출량과 비교하였다. 본 연구에서 제시한 강우보정 방법으로 지속시간에 따른 강우 증가를 고려할 수 있을 뿐만 아니라 고도에 따른 강우보정시 홍수량이 과대 산정되는 문제점을 해결할 수 있었다.

  • PDF

Estimation of Antecedent Moisture Condition in Rainfall-Runoff Modeling Based on Soil Water Balance Model (Soil Water Balance 모델을 이용한 강우유출 모형의 초기함수 조건 추정)

  • Lee, Ye-Rin;Kang, Subin;Shim, Eunjeung;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.307-307
    • /
    • 2021
  • 개념적 강우-유출모형에서 토양수분과 관련된 물리적 거동은 간략화 된 형태로 강우 및 온도자료를 활용하여 중간변량(state variable)으로 간접적으로 고려되고 있다. 특히 강우-유출모형에 초기함수 조건은 선행함수조건을 고려하여 수문지질학적 평가를 통하여 결정되어야 하나, 일반적으로 가정되거나 모형에서 간략화 된 분석과정을 통해 추정되고 있다. 본 연구에서는 토양의 Water Balance 모형 기반의 개념적 토양수분 추정모형을 활용하였다. 토양수분의 시간적 변동성을 평가하는데 있어서 연속적으로 측정된 In-situ 토양수분 자료를 이용하여 모형의 적합성을 평가하였다. Green-Ampt 방법과 중력식 침투방법과 온도를 활용한 증발산 추정기법을 연계한 토양함수 평가 모형을 개발하였다. In-situ 토양수분 자료와 유역의 강수량 및 온도자료를 이용한 관련 매개변수를 Bayesian 기법을 통해 추정하였으며 매개변수의 민감도를 평가하여 제시하였다. 최종적으로 제안된 모형의 활용측면에서 강우-유출모형의 초기함수 조건으로써의 역할을 평가하였다. 구체적으로 첨두유량 및 유출고와 초기함수조건과의 관계를 제시하고 강우-유출모형에서 활용방안을 제시하고자 한다.

  • PDF

Uncertainty analysis of grid-based distributed rainfall data on Mod-Clark model parameter estimation (격자기반 분포형 강우자료가 Mod-Clark 모형 매개변수 추정에 미치는 불확실성 분석)

  • Jeonghoon Lee;Jeongeun Won;Jiyu Seo;Sangdan Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.347-347
    • /
    • 2023
  • 홍수 예·경보 시에는 시간-단위 또는 그 이하의 시간 척도에서 작용하는 강우에 대한 고도의 영향이 중요하게 되며, 특히 상대적으로 더 드문 관측 밀도가 있는 산악지역에서 강우의 공간분포에 대한 산악 효과의 중요도가 더 높아지게 된다. 일반적으로 1시간 시간스케일에서 강우-고도의 관계를 살펴보기 위해서는 대략 5km 내외의 관측 밀도를 가져야 하는 것으로 알려져 있으나 이러한 지역은 매우 드물다. 최근 기상 예측 수치모델로부터 모의된 강우량의 품질이 눈에 띄게 향상됨에 따라 국내에도 다양한 연구가 수행된 바 있다. 본 연구에서는 WRF를 이용하여 남강댐 지역의 과거 호우 사상을 재현한 후, 이로부터 생산된 공간적인 강우장을 이용하여 시간-단위의 시간 척도에서 강우량과 고도 사이의 관계를 고려할 수 있는 WREPN(WRF Rainfall-Elevation Parameterized Nowcasting) 모형을 제안한다. 홍수량 분석을 위해 WREPN 모형을 이용하였으며, 비교군으로 실무적으로 많이 사용되는 IDW, Kriging 기반 격자강우가 사용되었다. 격자기반 분포형 강우자료로부터 홍수량을 분석하기 위해 Mod-Clark 모형이 적용되었으며, 입력된 강우자료별매개변수의 불확실성을 분석하기 위해 베이지안 기법이 적용되었다. 매개변수의 불확실성 분석으로부터 강우-고도 관계가 고려된 WREPN 모형의 강우자료가 상대적으로 불확실성이 낮다는 것을 확인할 수 있었다.

  • PDF

A Study on Linking K-DRUM and MODFLOW (강우유출모형(K-DRUM)과 지하수유동모형(MODFLOW) 연계에 대한 연구)

  • Park, Gu Young;Hur, Young Teck;Park, Jin Hyeog;Jang, Su Hyung;Kim, Byung Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.311-316
    • /
    • 2017
  • 기후변화는 물 관리 측면에서 많은 변화를 일으키는 것으로 보고되고 있다. 주로 강우의 패턴을 변화시키며, 가용수자원의 지역적 편중을 심화시킨다. 기후변화에 적응하며 안정적이고 균등한 용수확보를 위해서는 홍수와 가뭄을 고려한 연속적인 물 순환 해석기술이 필요하다. 강우유출분석은 강우사상에 대한 수문순환과정을 통해 유출량을 산출하는 것으로, 주로 직접유출과 중간유출이 이에 해당된다. 강우발생 이후 무강우기간에 대해서는 기저시간 이후에 발생되는 유출량의 정량적 산출이 필요하다. 기저유출은 강우 발생 시점에 급격히 발생하기보다는 선행강우에 따른 유역 내 지하수위 분포와 대수층의 특성, 하천수위에 따라 다양한 패턴으로 나타나기 때문에 지하수대의 수리학적 성분들을 반영할 수 있어야 한다. 이를 위해서는 강우유출모의 시 지표유출량 산정과 지하수유동해석을 통한 기저유출량 산정이 동시에 이루어져야 한다. 최근 국내외에서는 다양한 형태의 수문모형과 MODFLOW를 연계한 장기유출분석에 대한 연구가 활발하게 진행되고 있다. 본 연구에서 활용한 K-DRUM(K-water Distribution Runoff Model)은 K-water에서 자체 개발한 물리적 기반의 분포형 강우유출모형으로 강우유출, 유사, 기초수질항목에 대한 3차원 분석이 가능하다. 본 모형의 A층(표층)은 지표유출을 고려한 운동파법이 적용되었고, B층과 C층(중간층), D층(지하수층)은 선형저류법이 적용되었다. MODFLOW(A Modular Three-Dimensional Finite-Difference Ground Water Flow Model)는 1980년대 USGS(United State Geolog ical Survey)에서 개발된 가장 범용적으로 사용되는 지하수유동모형이며, 모듈화 된 구조를 갖고 있어 다양한 패키지 중 필요로 하는 기능을 독립적으로 모의할 수 있는 장점이 있다. 본 연구에서는 향후 기후변화에 따른 강우의 불확실성에 대비한 유역의 장기 물순환 해석을 위해 강우유출모형인 K-DRUM과 지하수유동모형인 MODFLOW를 연계하고자한다. 연계방법은 K-DRUM에서 계산된 D층으로 침루되는 양을 MODFLOW의 함양량으로 적용하고, MODFLOW에서 산출된 기저유량을 K-DRUM의 하천유출에 적용하는 것이다. 본 연구의 성과를 갈수기 유출해석에 적용하면 정확성을 크게 향상시킬 수 있을 것으로 판단된다.

  • PDF

Applicability Evaluation of Spatial Rainfall Generator (공간강우발생모형의 국내 적용성 평가)

  • Lee, Jeong Eun;Kim, Chul Gyum;Kim, Nam Won;Kim, Hyeon Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.342-342
    • /
    • 2019
  • 수자원 분야에서 장기적인 수문현상을 모의하기 위해 장기유출모형이 적용되어 오고 있다. 이러한 수문모형의 가장 주요한 기상입력자료는 강수량이며, 일단위의 시간스케일을 요구하는 것이 대부분이다. 또한, 장기적인 기후 시나리오 기반의 강수자료 생성을 위해 추계학적 기상모형이 널리 이용되고 있으며, 유역단위의 수문모형 적용을 위해 강우관측지점 간의 공간상관성을 고려한 기상모의모형이 개발되어 적용되고 있는 실정이다. 이러한 강우관측지점 간의 공간상관성을 고려하여 발생된 강우자료는 합리적인 유출해석을 위한 유역수문모형에서의 주요한 고려사항이다. 따라서, 본 연구에서는 공간적인 강우의 분포특성을 고려하기 위해 Agricultural Policy/Environmental eXtender(APEX) 모형 내에 개발된 Spatial Rainfall Generator(SRGEN)를 중심으로, 충주댐 상류유역을 대상으로 국내 적용성 평가를 수행하였다.

  • PDF

Applicability of Missing Rainfall Data Estimation using Artificial Neural Networks (신경망 모형을 이용한 결측 강우 자료 추정방법의 적용성 연구)

  • Cho, Herin;Park, Hee-Seong;Kim, Hyoungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.512-512
    • /
    • 2015
  • 시 공간적 관측에서 다양한 원인에 의해 강우 자료에 결측이나 오측이 발생할 수 있다. 강우를 측정하고 자료를 수집 관리하는 측면에서 결측 되거나 오측된 자료를 추정 보완할 필요가 있다. 현재까지 결측 강우 자료를 추정하기 위한 방법으로 결측 지점 인근의 관측소를 이용한 단순 가중 평균치 방법에서부터 복잡한 통계적 기반의 보간 방법에 이르기까지 많은 연구들이 진행되고있다. 본 연구에서는 결측 된 강우 자료를 추정하기 위해 인공 신경망을 이용하여 모형을 구축하고 주변 관측소의 강우자료를 이용해 신경망 학습을 실시하여 적용해 보았으며, 최근 관측의 단위가 짧아지고 있는 점을 고려하여 10분, 30분, 1시간 등 다양한 시간간격의 강우자료를 구축하고 선형회귀모형과 RDS 방법, 신경망 모형을 이용한 방법 등을 적용한 결과를 비교하여 신경망 모형의 적용성을 살펴보았다. 단순한 구조면에서는 기존의 RDS 방법에 대한 적용성이 높은 것으로 판단되었으나, 성능의 개선을 위한 별다른 방법이 없는 반면 신경망 모형은 입력 자료를 다양하게 변환하여 구성하는 경우 성능을 개선하여 적용성이 더 높아 질 수 있는 것으로 판단되었다. 향후 신경망 모형을 이용해 잘못 측정된 강우를 적절히 선별하고 결측된 보완함으로써 관측된 강우 자료의 활용성을 높일 수 있을 것이다.

  • PDF