최근 겨울철 온난화 경향이 뚜렷해지면서 강수형태가 비로 내리는 경우가 잦아지고 있다. 또한 대륙고기압이 확장할 때는 기압골의 영향으로 강우에서 강설로 변하는 예가 종종 나타나고 있다. 강수유형의 판단은 겨울철 중요한 예보요소 중 하나로 본 연구는 중서부지방의 2010년 2월 4일부터 12일까지의 사례기간동안 일기도, AWS관측자료, 위성, KLAPS(층후, 빙결고도, 상당온위) 자료를 바탕으로 하여 강우에서 강설로 변하는 강수형태를 분석한 것이다.
본 연구에서는 1980년대 도입되어 활용되고 있는 기상관측용 강우감지기의 관측 장애 및 오류 현황을 확인하고, 관측 효율 개선을 위해 강우감지기 1분 자료 수집, 산출 알고리즘 개선하고자 하였다. 오류 현황 분석 결과 강우감지기는 기상관측기 중 수동 품질관리를 가장 많이 시행되는 관측 장비로 이는 강수 산출 알고리즘 개선을 통해 강수 인식율 향상이 가능한 것으로 판단되었다. 국내외 강우감지기 알고리즘을 확인,선별하여 임의의 자료로 강수 인식율을 비교한 결과 10초 간격으로 강수를 측정 1회 이상 강수 측정 시 '강수'로 판별하는 알고리즘이 가장 높은 강수 인식율을 보였다. 해당 알고리즘이 강수를 과대모의하는 경향이 있으나 이는 원시자료 품질관리를 통해 개선 가능할 것으로 판단된다. 본 연구 결과를 토대로 강우감지기 오류율 감소와 정확도 향상에 기여할 수 있을 것으로 사료된다.
본 연구에서는 적설 추정 알고리즘과 추계 일기 생성 모형을 활용하여 관측 적설의 특성을 재현하는 연속 적설심 자료 모의 방법을 소개한다. 적설 추정 알고리즘은 강수 유형 판단, Snow Ratio 추정, 그리고 적설 깊이 감소량 추정까지 총 3단계로 구성된다. 먼저 강수 발생시 지상기온과 상대습도를 지표로 활용하여 강수 유형을 판단하고, 강수가 적설로 판별되었을 때 강수량을 신적설심으로 환산하는 Snow Ratio를 추정한다. Snow Ratio는 지상 기온과의 sigmoid 함수 회귀분석을 통해 추정하였으며, precipitation rate 조건(5 mm/3hr 미만 및 이상)에 따라 두 가지 함수를 적용하였다. 마지막으로 적설 깊이 감소량은 온도 지표 snowmelt 식을 이용하여 추정하였으며, 매개변수는 적설 깊이 및 온도 관측 자료를 활용하여 보정하였다. 속초 관측소 자료를 활용하여 매개변수를 보정 및 검증하여 높은 NSE(보정기간 : 0.8671, 검증기간 : 0.7432)를 달성하였으며, 이 알고리즘을 추계 일기 생성 모형으로 모의한 합성 기상 자료(강수량, 지상기온, 습도)에 적용하여 합성 적설심 시계열을 모의하였다. 모의 자료는 관측 자료의 통계 및 극한값을 매우 정확하게 재현하였으며, 현행 건축구조기준과도 일치하는 것으로 나타났다. 이 모형을 통하여 적설 위험 분석 분야뿐 아니라 기후 전망 자료와의 결합, 미계측 지역에 대한 자료 모의 등에도 광범위하게 활용될 수 있을 것이다.
정확한 강수예측을 위해서는 예측인자 선정과 예측방법에 대한 선택이 매우 중요하다. 최근에는 강수예측 방법으로 기계학습 기법이 많이 사용되고 있으며, 그 중에서도 특히 인공신경망을 사용한 강수예측 방법은 좋은 성능을 보였다. 본 논문에서는 딥러닝 기법 중 하나인 DBN(deep belief network)를 이용한 새로운 강수예측 방법을 제안한다. DBN는 비지도 사전 학습을 통해 초기 가중치를 설정하여 기존 인공신경망의 문제점을 보완한다. 예측인자로는 기온, 전일-전주 강수일, 태양과 달 궤도 관련 자료를 선정하였다. 기온과 전일-전주 강수일은 서울에서의 1974년부터 2013년까지 총 40년간의 AWS(automatic weather system) 관측 자료를 사용하였고, 태양과 달의 궤도 관련 자료는 서울을 중심으로 계산한 결과를 사용하였다. 전체 기간에서 일부는 학습 자료로 사용하여 예측모델을 생성하였고, 나머지를 생성한 모델의 검증 자료로 사용하였다. 모델 검증 결과로 나온 예측값들은 확률값을 가지며 임계치를 이용하여 강수유무를 판별하였다. 강수 정확도의 척도로 양분예보기법 중 CSI(critical successive index)와 Bias(frequency bias)를 계산하였다. 이를 통해 DBN와 MLP(multilayer perceptron)의 성능을 비교한 결과 DBN의 강수 예측 정확도가 높았고, 수행속도 또한 2배 이상 빨랐다.
기상레이더는 대류권의 기상 관측에 널리 사용되며, 기상예보를 비롯하여 항공, 농업, 수문학 등 다양한 분야에서 활용하고 있다. 기상레이더센터는 SSPA(Solid State Power Amplifier) 기반 X-Band 주파수대역(9GHz)을 사용하는 연구용 소형기상레이더 관측망을 운영하고 있다. 주로 수도권 저층 대기에서 발생하는 위험 기상현상을 1분 단위로 빠르게 관측하면서 정확한 강수 정보생산을 위한 연구를 수행하고 있다. 레이더 관측 자료는 전파를 이용하여 넓은 범위에 분포하는 눈, 비, 우박 등 대기수상체를 관측하여, 강수량 추정을 통해 강수 정보를 생산한다. 이에 따라 레이더 관측 자료의 정확성과 신뢰도를 높이기 위해서 레이더 품질관리 기술 적용은 필수적이다. 기상레이더센터는 소형기상레이더로 관측한 이중편파 자료의 효과적인 품질관리를 위한 각종 자료처리 모듈을 개발하여, 실시간 자료처리 프로그램에 적용하였다. 우선, 저층 대기 관측 시 기상에코와 더불어 강한 반사도로 나타나는 지형에코를 판별하는 모듈과 선형 또는 쐐기형태의 전파간섭에코를 비롯한 비기상에코를 효과적으로 제거하는 기술을 개발하였다. 다음으로, X-Band 주파수대역 기상레이더 관측 자료의 취약점인 강한 강수 시 발생하는 반사도 감쇠 현상을 보정하기 위한 기술도 개발하였다. 소형기상레이더 품질관리 개발과 적용을 통하여 생산된 자료는 HSR(Hybrid Surface Rainfall), 레이더 강수량 추정, 대기수상체 등 다양한 기상 산출물 생산과 동시에 기상 감시 및 연구 분야에 효과적으로 활용하고 있다.
In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.
최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.
2008년 여름 우리나라는 예년과 달리 홍수기에 북상하는 태풍이나 8월말에서 9월초까지 발생하던 장마전선의 영향을 받지 못했을 뿐만 아니라 홍수기 이후에도 중국에서 다가오는 동서고압대의 지속적인 영향으로 9월 중순 최고기온을 경신하면서, 강수가 없는 건조한 날씨가 계속되었다. 남부지방을 중심으로 8월말 이후 심화된 가뭄은 9월 중순에는 전국적으로 확산되었으며 도서지역의 부분적인 제한급수가 실시되거나 밭 작물 재배에 피해를 초래하기도 하였다. 본 연구에서는 위성영상 기반의 식생지수를 이용하여 2008년 가을가뭄의 시공간적 변화와 행정구역별, 권역별 가뭄 우심지역을 판별하였다. 또한, 가뭄정보를 제공하는 가뭄모니터링 시스템의 가뭄지수와 가뭄의 변화와 심도 등을 비교하였다. 위성영상자료는 MODIS NDVI를 이용하여 제작한 VCI와 SVI를 이용하였으며, 수자원공사의 '가뭄정보시스템'에서 제공하는 주 단위의 가뭄지수와 한국건설기술연구원 '통합수자원평가계획 시스템개발'에서 제공하는 월 단위의 가뭄지수를 활용하였다. 연구결과 행정구역상으로는 전라남 북도와 경상남도 지역이, 권역별로는 섬진 영산강 권역에서 극심한 가뭄이 발생한 것으로 판명되었으며 식생지수 기반의 가뭄발생지역 판별 결과와 기상학적 가뭄지수인 SPI와 PDSI의 가뭄분포가 유사하게 나타났다.
클러스터링 기법은 탐색적 자료 분석 기법으로 알려진 중요한 데이터마이닝 기법 중 하나로서 패턴 인식, 원격 탐사 등의 분야에 사용되고 있다. 이 방법을 이용하여 데이터의 기본 구조를 추출하고, 개체의 군집화 혹은 군집의 계층을 조직한다. 기상 레이더는 대기 중에 존재하는 물체에서 반사되는 신호를 이용하여 관측을 수행하고, 해당 좌표에 데이터를 저장하는 원리로 동작하는데, 이를 분석하기 위해서는 흩어져있는 레이더 데이터를 유사도를 바탕으로 강수에코와 비강수에코를 구분하여 군집화 할 필요가 있다. 따라서 본 논문에서는 클러스터링 기법을 레이더 데이터에 적용하는 방법에 대한 연구를 수행하였다. 또한, 강수에코와 비강수에코가 인접해 있을 경우 발생할 수 있는 문제를 해결하기 위하여 퍼지 로직과 계층적 클러스터링 기법을 접목하여 유사도를 판별하는 방법에 대한 연구를 수행하였다. 실제 사례를 바탕으로 본 논문에서 제안한 클러스터링 기법을 적용한 결과, 강수에코와 비강수에코가 인접해 있는 경우 기존 기법보다 좋은 결과를 도출하는 것을 확인할 수 있었다.
한반도 남해안 지역의 여름철 대기 안정도 특성을 분석함으로써, 한반도 특성에 맞는 강수 예측을 위한 대기 안정도 지수의 정량적인 임계값을 도출하고자 하였다. 보성 표준기상관측소에서 관측한 2019년도 여름철 라디오존데 집중관측자료를 분석에 사용하였으며, 총 관측자료는 243개 이다. 강수 유무 및 중규모 대기 현상에 대한 대기 안정도를 분석하기 위해서, 대류가용잠재에너지(Convective Available Potential Energy, CAPE)와 폭풍지수(Storm Relative Helicity, SRH)를 비교하였으며 특히 SRH 분석은 고도 별로 총 4개의 층으로(0-1, 0-3, 0-6, 0-10 km) 세분화하였다. 강수 유무에 따른 분석은 강수가 없는 경우, 강수발생 전 12시간, 강수 발생 시로 구분하여 수행하였다. 그 결과, 2019년도 보성에서 발생한 여름철 강수 예측에는 CAPE 보다 SRH가 더 적합하며 0-6 km SRH가 약한 토네이도가 발생가능한 기준과 같은 150 m2 s-2 이상일 경우 강수가 발생한 것으로 분석 된다. 또한, 장마와 태풍 기간의 대기 안정도를 분석한 결과를 보면, 일반적으로 SRH는 대기 깊이가 두꺼워 질수록 값이 커지는 데 반해서 0-10 km SRH 평균값 보다 0-6 km 의 SRH 값이 더 크게 나타났다. 따라서, 2019년도 보성에서 발생한 태풍에 의한 강수를 판별하는 데는 0-6 km 의 SRH 값이 더 효과적이라고 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.