• 제목/요약/키워드: 강수량예측

검색결과 582건 처리시간 0.04초

딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발 (Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island)

  • 박재성;정지호;정진아;김기홍;신재현;이동엽;정새봄
    • 지질공학
    • /
    • 제32권4호
    • /
    • pp.697-723
    • /
    • 2022
  • 본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양 간 지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.

실시간 관측자료를 이용한 단시간 강수 예측에 관한 연구 (A Study on the Short-term Forecast Method Using Real-time On-site Data)

  • 이종대;윤성심;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.111-114
    • /
    • 2008
  • 최근 기후변화 등의 영향으로 전 세계 많은 지역에서 집중호우로 인한 홍수 피해가 증가하고 있으며, 국내에서도 홍수 피해액이 지속적으로 증가하는 추세이다. 이러한 집중호우로 인한 홍수의 피해를 줄이기 위해서는 보다 정확한 강수 예측이 선행되어야 하며, 국내에서는 레이더와 인공위성 자료를 이용한 강수 예측기법에 대한 많은 연구가 수행되고 있다. 이러한 강수 예측기법은 공간적으로 균일한 자료를 획득할 수 있는 장점이 있으나, 아직까지 정확도측면에서 활용성에 한계가 있어서 지상 관측소 자료를 이용하여 보정과정을 거친 후 예측에 활용하고 있다. 본 연구에서는 조밀한 지상 관측망을 보유한 서울지역의 실시간 관측 자료를 이용하여 단시간 강수예측을 수행할 수 있는 방법론을 제시하였다. 이 방법은 지상관측자료와 이류 모델을 이용하여 강수를 예측하는 기법이다. 이를 위해 본 연구에서는 47개 지점의 서울시 홍수정보시스템의 자료를 이용하여 단시간 강수량 예측의 방법론과 적용 방법을 제시하고자 하였다.

  • PDF

상층기상자료와 신경망기법을 이용한 면적강우 예측 (Forecast of Areal Average Rainfall Using Radiosonde Data and Neural Networks)

  • 김광섭
    • 한국수자원학회논문집
    • /
    • 제39권8호
    • /
    • pp.717-726
    • /
    • 2006
  • 본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층 풍향자료를 사용한 경우에 상관계수가 0.41에서 0.73으로 개선되었으며 숙련도도 35%향상되었다. 모형의 개선도를 나타내는 통계치의 개선을 통해 상층기상자료를 활용한 강우예측 모형이 단지 지상 강우계 자료만 사용한 예측보다 개선된 결과를 보여줌을 알 수 있다.

인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법 (Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network)

  • 강부식;이봉기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

ANFIS를 이용한 하천수위 예측 (Forecast of Stream Level Using ANFIS)

  • 최창원;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.132-136
    • /
    • 2007
  • 최근 지구온난화로 인한 이상기후의 영향으로 강우일수는 줄고 있으나 강수량은 예년과 비슷한 수준을 보이고 있다. 이로 인해 갈수기의 용수부족 현상은 더욱 심해지고. 장마철의 홍수피해와 게릴라성 집중호우로 인한 피해가 커지는 등 해가 갈수록 홍수 예경보의 중요성은 더욱 높아지고 있다. 그럼에도 불구하고 현재 홍수 예경보 체계는 몇 가지 문제를 가지고 있다. 기존 예경보 체계의 경우 한 번의 예측을 수행하기 위해 수반되는 전처리과정과 주계산과정을 거치는 동안 각 과정에서 발생한 오차들이 반복, 누적되어 최종 결과물(예측된 유출량) 속에 모두 포함된다. 또한 기존 체계에서는 유출모형을 적용하기 위해서 토양형. 피복상태 등에 관련된 매개변수들이 필요한데. 이러한 매개변수의 결정에 어려움이 있고. 불확실성을 갖고 있다. 본 연구에서는 불확실성을 적극적으로 인정하고 수학적으로 해석하려는 fuzzy 이론을 신경망 이론에 도입하여 홍수 예경보 시스템의 운영과정에서 발생하는 불확실성의 문제를 해결하고자 하였다. 본 연구에서 사용한 ANFIS(Adaptive Neuro-Fuzzy Inference System)은 data driven model(자료에 기반을 둔 모형)의 하나로 다음과 같은 장점을 가진다. 우선 data driven model은 유역의 물리적, 지형적 특성을 고려하지 않고(매개변수설정에서 발생하는 문제 해결 가능), 입력자료와 출력자료만을 고려하여 구축되는 모형이므로, 유역의 물리적 자료나 지형 자료와 같은 방대한 양의 자료 수집이 필요 없고, 일단 모형이 구축되면 자료의 입력만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 획득할 수 있다. 그리고 유역 내의 상황이 변화하더라도, 이들의 영향을 고려하여 쉽게 모형을 갱신할 수 있다. 마지막으로 모형의 구축 과정이 물리적 모형에 비해 비교적 간편하다는 장점이 있다. 본 연구에서는 ANFIS를 통해 탄천유역의 강수량 자료와 대곡교의 수위자료를 입력자료로 사용하여 대곡교의 수위를 예측하였다. 입력 자료는 시간차 계열의 강우량과 수위 자료를 사용하였으며 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다.

  • PDF

RCP8.5시나리오를 이용한 남한지역의 장래 가뭄 예측 (Future Drought Forecasting Using RCP 8.5 Scenarios in the Korean Peninsula)

  • 장동우;박효선;최진탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.207-207
    • /
    • 2016
  • 최근 2년 간 한반도에 내린 강수량은 평년에 비해 60%정도 밖에 내리지 않았다. 이로 인해 2015년에는 전국 곳곳에서 가뭄이 발생하였고, 농작물피해, 이수부분에서 어려움을 겪었다. 지역적으로 가뭄피해를 해소하고자 여러 대책이 강구되고 있고, 국가적으로 가뭄을 극복하기 위해 국가가뭄정보분석센터의 개소 등 기상, 수문정보를 바탕으로 한 가뭄 해소 노력이 증대되고 있다. 기상청에서는 기상확률예보를 통해 단기적인 강수, 가뭄 예측자료를 제공하고 있으며, 전지구모델을 상세화 한 지역기후모델을 통해 한반도 전 지역에 대해 기후변화시나리오에 의한 강수, 기온자료를 제공하고 있다. 가뭄을 예측하고, 가뭄정도를 파악하기 위해서 가뭄지수를 보편적으로 이용하고 있다. 강수와 기온은 기상학적 가뭄지수 산정에 가장 중요한 인자로 이용되고 있다. SPI는 강수자료를 이용하여 가뭄정도를 파악할 수 있는 지수이고, RDI는 강수와 기온자료를 통해 잠재 증발산량을 산정하고, 이를 고려하는 가뭄지수이다. 한반도 내 주요 관측소지점에 대해 RCP 8.5 시나리오에 의한 장래 2100년까지 가뭄지수를 산정한 결과 RDI의 경우 가뭄발생빈도와 강도가 점차 증가하는 것으로 나타났다. 장래 한반도의 연 강수량은 크게 감소하지 않는데 비해 기온은 점차 증가하는 경향이 발생함에 따라 기온상승에 의한 증발산량의 증가가 극한가뭄이 발생하는 주요요인으로 판단되었다. 수도권지역의 경우 예측기간이 2100년에 가까울수록 SPI에 의한 가뭄지수는 점차 증가하여 가뭄 강도가 약해지는 것으로 예측되었고, RDI지수에 의한 가뭄지수는 점차 감소하여 극한가뭄이 발생할 가능성이 증가하는 것으로 나타났다. 본 연구 결과를 통해 장래 가뭄에 의한 피해지역 예측, 수자원 계획, 이수분야에 활용될 수 있을 것으로 기대된다.

  • PDF

머신러닝 기법을 활용한 토양수분 예측 가능성 연구 (Study on Soil Moisture Predictability using Machine Learning Technique)

  • 조봉준;최완민;김영대;김기성;김종건
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.248-248
    • /
    • 2020
  • 토양수분은 증발산, 유출, 침투 등 물수지 요소들과 밀접한 연관이 있는 주요한 변수 중에 하나이다. 토양수분의 정도는 토양의 특성, 토지이용 형태, 기상 상태 등에 따라 공간적으로 상이하며, 특히 기상 상태에 따라 시간적 변동성을 보이고 있다. 기존 토양수분 측정은 토양시료 채취를 통한 실내 실험 측정과 측정 장비를 통한 현장 조사 방법이 있으나 시간적, 경제적 한계점이 있으며, 원격탐사 기법은 공간적으로 넓은 범위를 포함하지만 시간 해상도가 낮은 단점이 있다. 또한, 모델링을 통한 토양수분 예측 기술은 전문적인 지식이 요구되며, 복잡한 입력자료의 구축이 요구된다. 최근 머신러닝 기법은 수많은 자료 학습을 통해 사용자가 원하는 출력값을 도출하는데 널리 활용되고 있다. 이에 본 연구에서는 토양수분과 연관된 다양한 기상 인자들(강수량, 풍속, 습도 등)을 활용하여 머신러닝기법의 반복학습을 통한 토양수분의 예측 가능성을 분석하고자 한다. 이를 위해 시공간적으로 토양수분 실측 자료가 잘 구축되어 있는 청미천과 설마천 유역을 대상으로 머신러닝 기법을 적용하였다. 두 대상지에서 2008년~2012년 수문자료를 확보하였으며, 기상자료는 기상자료개방포털과 WAMIS를 통해 자료를 확보하였다. 토양수분 자료와 기상자료를 머신러닝 알고리즘을 통해 학습하고 2012년 기상 자료를 바탕으로 토양수분을 예측하였다. 사용되는 머신러닝 기법은 의사결정 나무(Decision Tree), 신경망(Multi Layer Perceptron, MLP), K-최근접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support Vector Machine, SVM), 랜덤 포레스트(Random Forest), 그래디언트 부스팅 (Gradient Boosting)이다. 토양수분과 기상인자 간의 상관관계를 분석하기 위해 히트맵(Heat Map)을 이용하였다. 히트맵 분석 결과 토양수분의 시간적 변동은 다양한 기상 자료 중 강수량과 상대습도가 가장 큰 영향력을 보여주었다. 또한 다양한 기상 인자 기반 머신러닝 기법 적용 결과에서는 두 지역 모두 신경망(MLP) 기법을 제외한 모든 기법이 전반적으로 실측값과 유사한 형태를 보였으며 비교 그래프에서도 실측값과 예측 값이 유사한 추세를 나타냈다. 따라서 상관관계있는 과거 기상자료를 통해 머신러닝 기법 기반 토양수분의 시간적 변동 예측이 가능할 것으로 판단된다.

  • PDF

모델트리를 활용한 죽산보 단기조류예측에 관한 연구 (Study on the Prediction of short-term Algal Bloom in Juksan weir Using the Model Tree)

  • 이보미;이혜숙;정선아;주용은;김호준;최광순
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.450-450
    • /
    • 2018
  • 최근 기후변화와 수온상승으로 인한 녹조발생이 빈번하게 나타나며, 녹조발생에 관한 관심은 꾸준히 증가하고 있는 추세이다. 본 연구는 효율적인 녹조관리를 위하여 모델트리를 활용하여 클로로필-a 단기조류예측 기법을 개발하였다. 대상지역으로 영산강수계의 죽산보를 선정하였으며, 2013년 1월부터 2016년 12월까지 나주 수질자동측정망의 일 단위자료와 동일기간 광주 기상청의 일별 기상자료를 이용하였다. 상관 분석을 통해 T-N, T-P, N/Pratio와 클로로필-a, 수온, 일사량, 강수량을 독립변수로, 단기(t+1일, t+3일, t+5일, t+7일) 클로로필-a를 종속변수로 선정하여 단기조류예측기법을 개발하였다. 수집한 자료의 데이터세트는 격일 간격으로 Training, Testing 기간으로 구분하여 적용한 결과, 상관계수는 1일 예측 시, Training 기간에 0.89, Testing 기간에 0.91, 3일 예측 시, Training 기간에 0.74, Testing 기간에 0.68, 5일 예측 시, Training 기간에 0.70, Testing 기간에 0.66, 7일 예측 시, Training 기간에 0.63, Testing 기간에 0.62로 나타났다. RMSE(Root Mean Square Error)는 1일 예측 시, Training 기간에 13.96, Testing 기간에 12.22, 3일 예측 시, Training 기간에 20.03, Testing 기간에 22.14, 5일 예측 시, Training 기간에 21.32, Testing 기간에 22.57, 7일 예측 시, Training 기간에 23.52, Testing 기간에 23.45로 나타났다. 예측주기에 따라 모델트리와 회귀식에서 활용한 독립변수는 1일 예측 시, 모델트리는 N/Pratio, 클로로필-a, 회귀식은 클로로필-a로 다르게 나타났다. 반면, 3일, 5일, 7일 예측 시, 모델트리와 회귀식에 활용된 변수는 같게 나타났다. 클로로필-a, 수온, 일사량은 5일 예측 시 활용된 변수로, 3일 예측 시에는 기상항목인 강수량이, 7일 예측 시에는 수질항목인 T-N, N/Pratio가 추가되었다. 특히 1일 예측 시 일 때, 높은 예측정도와 활용된 변수의 수가 적게 나타나는 것을 확인하였으며, 예측기간이 길어질수록 예측의 정확성이 낮아지고, 활용된 변수의 수가 많아지는 것을 확인하였다. 향후 적정한 예측기간을 판단하고 예측가능성을 높이기 위해서는 지속적인 자료취득 및 개선이 필요하며, 이를 바탕으로 적절한 단기조류예측이 가능할 것으로 판단된다.

  • PDF

인공신경망을 이용한 RDAPS 강수량 예측 정확도 향상 (Improving Accuracy of RDAPS Prediction Precipitation using Artificial Neural Networks)

  • 신주영;최지안;정창삼;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1013-1017
    • /
    • 2008
  • 이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.

  • PDF

고층관측자료가 강수량 수치예측 정확도에 미치는 영향 (흑산도와 호남지방을 중심으로)

  • 원효성;박근영;류찬수
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.125-128
    • /
    • 2003
  • 본 연구는 PC-cluster를 플랫폼으로 사용하는 호남지방 고해상도 기상예측시스템을 이용하여 기존에 광주의 고층자료만 사용했을 때와 흑산도의 고층자료를 추가하였을 때의 3차원 자료동화의 차이가 지리산을 중심으로 한 호남지방의 강수예측에 미치는 영향을 알아보고자 수치실험 결과와 호남지방의 관측결과를 통하여 모델을 통한 강수예측을 검증한 것이다. 광주와 흑산도의 자료로 강수예측 결과를 비교해 본 결과, 광주는 22일 12LST 이전부터 강수가 시작되었는데 광주의 고층자료만 사용한 EXP1에서는 강수가 나타나지 않는 반면에 흑산도가 추가된 EXP2에서는 강수예측이 향상된 것으로 나타났다. 따라서 흑산도의 고층 데이터가 추가된 3차원 자료동화가 광주 예측능력을 향상시킬 것으로 판단된다.

  • PDF