• 제목/요약/키워드: 강수량예측

검색결과 582건 처리시간 0.042초

MME 기반 APCC 계절예측 자료를 활용한 인도네시아 산불 예측 (Predicting Forest Fire in Indonesia Using APCC's MME Seasonal Forecast)

  • 조재필
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.7-7
    • /
    • 2016
  • 인도네시아 산불에 의한 연무는 동남아시아 인접한 국가들에 있어서 심각한 환경문제 중 하나이다. 국제적으로 심각한 문제를 야기하는 인도네시아의 산불은 건조기에 강수량이 적게 내리는 극심한 가뭄 조건에서 발생한다. 건조기 강수량을 모니터링 하는 것은 산불 발생 가능성을 예측하기 위해 중요하지만 산불을 사전에 예방하고 영향을 최소화하기에는 부족하다. 따라서 산불에 대한 선제적 사전예방을 위해서는 수개월의 선행예측 기간을 갖는 조기경보 시스템이 절실하다. 따라서 본 연구는 인도네시아 산불에 대한 선제적 대응을 위한 강수량 예측시스템을 개발하고 예측성을 평가하여 동남아시아 지역의 화재 연무 조기경보 시스템의 시제품(Prototype)을 개발하는데 있다. 강수량 예측을 위해서 APEC 기후센터의 계절예측정보의 활용 정도에 따라서 4가지 서로 다른 방법을 통합하여 사용하였다. 예측정보 기반의 방법들로는 대상지역의 강수량 예측을 위해서 대상 지역 상공의 계절예측 강수자료를 보정을 통해 직접적으로 사용하는 SBC (Simple Bias Correction) 방법과 대상 지역 상공의 강수 예측자료를 사용하는 대신에 지역 강수량과 높은 상관 관계를 보이는 다른 지역의 대리변수를 예측인자로 사용하는 MWR (Moving Window Regression) 방법이 있다. 또한 예측자료의 사용 없이 과거자료 기반의 기후지수(Climate Index) 중에서 지체시간을 고려하여 지역 강수량과 높은 상관관계를 갖는 경우 예측에 활용하는 관측자료 기반의 CIR (Climate Index Regression) 방법과 예측기반 MWR과 관측기반의 CIR 방법에서 선정된 예측인자를 동시에 활용하는 ITR (Integrated Time Regression) 방법이 사용되었다. 장기 강수량 예측은 보르네오 섬의 4개 지역에서 3개월 이하의 선행예측기간에 대하여 0.5 이상의 TCC (Temporal Correlation Coefficient)의 값을 보여 양호한 예측성능을 보였다. 예측된 강수량 자료는 위성기반 관측 강수량 및 관측 탄소 배출량 관계에서 결정된 강수량의 임계값과의 비교를 통해 산불발생 가능성으로 환산하였다. 개발된 조기경보 시스템은 산불 발생에 가장 취약한 해당지역의 건조기(8월~10월) 강수량을 4월부터 예측해 산불 연무에 대한 조기경보를 수행한다. 개발된 화재 연무조기경보 시스템은 지속적인 개선을 통해 현장 실효성을 높여 동남아국가 정부의 화재 및 산림관리자들에게 보급함으로써 동남아의 화재 연무로 인한 환경문제 해결에 기여할 수 있으리라 판단된다.

  • PDF

외부기상인자를 고려한 낙동강유역 계절강수량 단기예측모형 (Seasonal rainfall short-term forecasting model considering climate indices)

  • 이정주;권현한;황규남;전시영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.401-401
    • /
    • 2011
  • 본 연구는 Bayesian MCMC(Markov Chain Monte Carlo)를 이용한 비정상성 빈도해석 모형에 외부기상인자를 결합하여 계절단위의 강수량을 예측하는데 목적을 두고 있으며, 그 중에서도 홍수 위험도와 관련하여 유용하게 이용될 수 있는 여름강수량을 예측 대상으로 하였다. 비정상성 빈도해석 모형을 기반으로 외부 기상인자에 의한 변동성을 고려하기 위해서는 대상 수문량을 한정할 필요가 있으며 극대치강수량과 연관성이 높은 장마전선, 태풍 등의 기상인자는 공간적 변동성 및 복합적인 특성들로 인해 예측인자를 구성하는 기상인자로 사용하기에는 무리가 있다. 따라서 본 연구에서는 계절단위의 수문량으로 여름강수량을 대상으로 하였으며, 이에 영향을 미치는 외부 기상인자로서 SST(sea surface temperature)와 OLR(outgoing longwave radiation)을 도입하였으며, 낙동강유역 여름강수량과의 공간 상관성이 높은 지역의 이전 겨울 SST와 6월 OLR을 예측인자로 활용한 7~9월 여름강수량 예측모형을 구성하였다. 모형의 검증은 결과를 알고 있는 2010년 여름 강수량을 대상으로 수행하였으며, 모형의 적용은 현재시점에서 관측된 2010년 겨울 SST와, 과거 관측 자료를 토대로 가정된 2011년 6월 OLR을 이용하여 2011년 여름 강수량을 예측하였다. 결과적으로 모형 매개변수들의 사후분포로부터 불확실성 구간을 포함한 예측결과를 구할 수 있었다.

  • PDF

갈수관리 활용을 위한 월강수량 가뭄빈도분석 (Drought Frequency Analysis using Monthly Rainfall for Low Flow Management)

  • 문장원;김정엽;조효섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.415-415
    • /
    • 2018
  • 갈수관리를 효과적으로 수행하기 위해서는 하천유량을 예측할 수 있는 방안을 마련하는 것이 중요하다. 하천유량 예측을 위해서는 강수량에 대한 예측 값을 활용하는 방안이 가장 적합하다고 할 수 있으나 강수량 예측에 대한 불확실성은 하천유량 예측의 정확도 확보에 있어 한계로 작용하고 있다. 강수량 예측에 대한 불확실성 극복을 위해서는 다양한 강수 시나리오를 설정하여 활용하는 방안을 검토할 수 있으며, 유량 예측을 하고자 하는 유역에 대해 과거 발생했던 강수량이 반복된다는 가정 하에 유량 예측을 제한적으로 수행하고 있는 상황이다. 이와 함께 강수 시나리오의 다양성 확보 차원에서 하천유량을 예측하고자 하는 유역에 대해 가뭄빈도 강수량을 사전에 산정한 후 유량 예측 과정에 활용하는 방안도 고려해볼 수 있는 방안이다. 이에 본 연구에서는 2016년 수립된 수자원장기종합계획(국토교통부, 2016)에서 제시된 중 권역별 일 강수량 자료를 이용하여 중권역별로 월 강수량을 산정한 후 월별 가뭄빈도분석을 수행하였다. 1966~2015년까지의 기간에 대한 월 강수량 자료를 이용하여 월별로 가뭄빈도분석을 수행하였으며, 빈도분석 방법으로는 확률가중모멘트법을 이용하여 적정 분포형 결정 및 갈수빈도별 강수량을 산정하여 제시하였다. 이때 빈도 강수량의 재현기간은 총 7가지 빈도(2년, 5년, 10년, 20년, 50년, 80년, 100년)를 고려하였다. 산정된 빈도 강수량을 이용하여 월 유출모형에 적용함으로써 월 유출 전망 자료 생산이 가능하며, 금강수계의 용담댐유역에 시범 적용하여 그 결과를 검토하였다. 검토 결과, 중권역별로 산정된 월별 가뭄빈도 강수량을 활용한 하천유량 예측 방법은 갈수예보에 있어 유용한 정보를 제공할 수 있을 것으로 판단된다.

  • PDF

기상자료 및 GCMs 예측결과를 활용한 단기 가뭄 예측 (Climate Information and GCMs Seasonal Forecasts Based Short-term Forecasts for Drought)

  • 권현한;문장원;송현섭;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1186-1190
    • /
    • 2009
  • 강수량이 예년에 비해 적은 양상은 여름강수량에 대한 부족으로 기인한다. 우리나라의 경우 장마기간의 강수와 태풍으로 인해 발생하는 강수가 전체 강수량에 많은 부분을 차지하고 있기 때문에 여름강수량이 적게 나타나게 되면 가을 가뭄 및 봄 가뭄에 대한 발생 압력도 그 만큼 커지게 되는 것이 일반적이다. 기존 연구들이 단순히 강수량을 가정하거나 시나리오를 기반으로 가뭄을 전망하는데 그치고 있으나 본 연구에서는 2009년 가뭄전망을 위해서 전지구기후모형(GCMs)의 3개월 기상예측 결과를 활용하고자 한다. 즉, APEC 기후예측 센터로부터 제공 받은 3개월 GCM Multi-Model Ensemble 예측 결과를 바탕으로 가뭄상태를 평가하였다. 따라서 본 연구의 목적은 Large-scale의 기후예측 시스템과 기상관측지점의 강수 및 온도를 연결시켜 가뭄을 전망할 수 있는 시스템을 구축하는데 있다. GCM 예측 결과를 바탕으로 2009년도 매월 강수량 및 평균 온도를 추정하여 PDSI 가뭄지수 산정에 이용하였다.

  • PDF

정량적인 월강수량 예측에 관한 연구 (A Study of Quantitative Monthly Precipitation Forecast)

  • 신주영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1625-1629
    • /
    • 2010
  • 효율적인 장기 수자원 운영을 위하여 미래의 강수량을 예측하는 것은 중요하다. 특히 월 또는 계절단위의 강수량의 정량적인 예측이 필요하다. 우리나라에서는 기상청에서 향후 3개월의 강수량과 온도에 대하여 정성적으로 예측을 하고 있다. 정성적인 예측은 적음과 많음만을 나타내어 정보를 활용하기에 많은 제약이 있다. 기상수치모형을 통한 예측의 경우 월간과 같은 시간스케일에서 정량적인 예측이 가능하나 예측 정확도가 떨어지는 문제로 인하여, 일반적으로 정성적인 예측을 하고 있다. 이런 문제점을 극복하고자 본 연구에서는 기상수치모형을 이용하지 않고 시계열 모형을 이용하여 월강수량을 예측하고자 한다. 기존의 통계학에서 사용되는 시계열 모형과 자기학습모형 등을 이용하여 정량적인 월 강수량을 예측하는 다양한 모형을 구성하고, 각 모형의 적용성을 평가하고자 한다.

  • PDF

예측 강수의 물 인프라 계획 적용성 강화를 위한 확률강수량 제시 (Probable Precipitation Proposal for Strengthening Water Infrastructure Planning Applicability of Precipitation Forecasting)

  • 박효선;최계운;장동우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.398-398
    • /
    • 2017
  • 확률강수량은 하천, 하수도, 재해관련 시설 계획 등 각종 물 인프라를 계획하기 위한 기초 자료로 활용되고 있다. 최근의 기후변화 양상을 고려할 때, 지역적으로 다양하게 변화되는 강수패턴은 확률강수량 산정에 있어서도 영향을 미칠 것으로 예상된다. 이 연구에서는 현재 물 인프라 계획에 사용되는 확률강수량의 적용실태를 분석하였으며, 기후변화 영향이 점차 증가할 것으로 보이는 미래의 물 관련 인프라를 건설하거나 시설 개선에 사용되는 확률강수량이 미래 예측 강수를 고려하는 경우에 어떻게 변화되는지를 연구하였다. 인천관측소 지점을 대표 분석 지점으로 선정하여 연강수량, 일최대강수량을 제시하였으며, 기존 확률강수량을 검토하였다. 또한, 인천관측소 지점의 1961~2015년의 분단위 자료를 이용하여 임의시간에 따른 1440분 최대강수량을 산정하였으며, RCP 2.6, 4.5, 6.0, 8.5 시나리오에 따른 2016~2100년 기간의 미래 예측 강수자료에 고정시간-임의시간 환산계수를 적용하여 빈도별 확률 강수량을 산정하였다. RCP 기후변화 시나리오에 의한 미래 예측 강수를 적용한 경우와 과거 관측 자료만을 이용한 확률강수량의 차이를 분석한 결과, 편의보정 여부와 관측지점 및 확률빈도에 따라 결과에 상당한 차이가 발생하였다. 향후 물인프라 계획에 있어서는 미래 예측 강수의 패턴과 지역적 특성 등을 여러 측면으로 고려한 계획을 수립하는 것이 지속가능한 물 관리에 필요한 것으로 판단된다.

  • PDF

글로벌 기후지수와의 원격상관을 이용한 경안천 유역의 월 강수량 예측 (Forecasting monthly precipitation of Gyeongan-cheon watershed using teleconnection with global climate indices)

  • 김철겸;이정우;이정은;김남원;김현준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.314-314
    • /
    • 2019
  • 가뭄대응 및 이수분야 활용을 위한 장기 기상예측정보 확보를 위해, 경안천 유역을 대상으로 전구기후지수의 원격상관 패턴을 이용하여 통계적 기반의 다중회귀모형을 구성하고 월 강수량의 예측가능성을 평가하였다. 예측인자로서 미국 NOAA에서 제공하는 기후지수 중 총 37개의 지수에 대해 1948~2018년의 월 자료를 이용하였으며, 예측대상인 경안천 월 강수량은 1966~2018년의 유역평균 강수량 자료를 활용하였다. 각 기후지수별 1~24개월 선행자료와 예측대상년도 월 강수량과의 상관분석을 통해 상관성이 높은 기후자료를 선별하여 다중회귀모형의 독립변수로 적용하였다. 예측대상년도를 기준으로 과거 40년의 자료(월 강수량 및 월 기후지수)를 보정자료와 검정자료로 구분(20년씩 무작위로 추출)하고, 보정기간에 대해 도출된 회귀모형 중 검정기간을 대상으로 예측성이 좋은 100개의 회귀모형을 선별하여 예측대상기간에 대한 예측모형으로 활용하였다. 2006~2018년에 대해 전망기간별(1개월, 3개월, 6개월, 12개월)로 각 월별 100개 회귀모형으로 부터의 예측값(예측치의 범위)이 실제 관측치를 포함하는 경우를 월별로 분석한 결과 10월이 가장 높고(83%), 11월(81%), 1월(79%), 8월(77%), 6월(75%), 12월(71%)의 순으로 높게 나타났으며, 상대적으로 7월(29%)과 3월(44%)의 예측성이 낮은 것으로 나타났다. 통계적 모형의 특성상 전망기간에 따른 예측의 정확도는 비례하지 않았다. 예측치의 편차는 크지 않지만 예측성이 낮게 나타나는 기간(3월, 2월)과 예측성은 높지만 예측범위가 크게 나타나는 기간(8월, 6월)에 대해서는 예측모형의 재검토 및 다양한 규모의 유역에 대한 적용을 통해 예측인자 추가 및 보완 등을 수행할 예정이다.

  • PDF

가뭄 예보를 위한 딥러닝 모델의 월 강수량 예측 성능 평가 (Evaluation of the predictive performance for monthly precipitation of a deep learning model for drought forecasting)

  • 원정은;최정현;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.304-304
    • /
    • 2022
  • 가뭄은 인간 활동과 생태계의 다양한 측면에 영향을 미치는 중요한 자연재해 중 하나이다. 가뭄을 사전에 예측하여 필요한 완화 조치를 취하고 환경적 피해를 줄이는 것이 중요하다. 이에 따라 다양한 인공지능 기술을 이용한 가뭄 예측은 수문학, 수자원 관리, 농업 등의 분야에서 중요성이 커지고 있다. 최근에는 딥러닝 알고리즘을 기반으로 하는 중장기 강수예보를 위한 다양한 방법이 제시되고 있다. 이 논문의 목적은 가뭄 예보를 목적으로 월 강수량 예측을 위한 딥러닝 모델의 성능을 평가하는 것이다. 이를 위해 딥러닝 모델인 LSTM(Long Short-Term Memory)을 적용하였으며, 1981-2020년 기간의 월 강수 자료가 모델을 구축하기 위해 사용되었다. 관측자료를 기반으로 학습된 모델을 이용하여 테스트 기간에 대해 월 강수량을 예측하였다. 예측된 강수량을 통해 표준강수지수(Standardized Precipitation Index, SPI)을 산정하고, 예측 정확도를 분석하였다. 이 연구는 가뭄 예보를 위한 딥러닝 모델의 적용 가능성을 보여준다.

  • PDF

기후변화에 따른 서울지역의 강우-지속기간-빈도 관계 평가 (Assessment of Depth-Duration-Frequency Relationship Considering Climate Change in Seoul)

  • 신주영;주경원;김수영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.370-374
    • /
    • 2011
  • 기후변화에 따른 수해를 대비하기 위해서는 미래의 확률강수량을 알아야 한다. Global Circulation Model(GCM)은 미래의 기후변화를 예측하기 위하여 많은 분야에서 널리 쓰이고 있다. GCM의 시간축척은 일반적으로 월단위로 시간단위 자료를 사용하는 수공학 분야에 직접적으로 적용하기에는 많은 문제가 있다. 또한 GCM 예측값은 실강우값과 큰 편의(bias)를 가지고 있어 직접적인 적용이 힘들다. 이런 문제를 해결하고자 다양한 다운스케일(downscale)기법이 연구되고 있다. 다운스케일기법을 적용하여 시간자료를 예측하면 전반적인 통계값을 잘 재현해내나, 극치값의 경우 잘 재현해내지 못하는 문제가 있다. 이런 문제점을 극복하고자 본 연구에서는 연최대 월강수량과 연최대 시간강수량의 이변량빈도해석을 통하여 기후변화를 고려한 강우-지속기간-빈도 관계의 변화를 평가해보고자 한다. 본 연구는 연최대 월강수량과 연최대 시간강수량과의 관계가 변하지 않는다는 가정하에 관측강수량을 이용하여 연최대 월강수량과 연최대 시간강수량의 이변량분포모형을 구축하였다. 이변량 분포모형을 구축하기 위하여 copula 모형을 적용하였다. 구축된 모형에 GCM으로 예측된 연최대 월강수량을 적용하여 미래의 확률강수량을 평가하였다. 본 연구에서는 서울지점을 대상지점으로 선정하였으며, A2 기후변화시나리오를 적용한 GCM 예측값을 이용하였다. 적용결과 A2 기후변화 시나리오 상에서 미래의 확률강수량이 크게 증가하는 것이 확인되었다.

  • PDF

우리나라 근해의 해수면 온도 및 기온과 강수량과의 상관성 분석 (Correlation Analysis between Sea Surface Temperature in the near Korea and Rainfall/Temperature)

  • 권현한;오태석;안재현;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1460-1464
    • /
    • 2006
  • 강수량의 특성 및 계절적인 양상은 지협적인 원인이기 보다는 해수면 온도(sea surface temperature)와 같은 기상 현상에 주로 영향을 받는다. 이러한 관점에서 강수량과 같은 수문변량의 장기적인 거동을 기상인자로부터 유추하고자 하는 연구는 무엇보다 중요하며 이러한 추론을 바탕으로 강수량의 장기예측 및 모의를 위한 기본적인 도구로 활용을 가능케 한다. 따라서 본 연구의 주요 목적은 해수면 온도를 기본으로 강수량과 기온의 변동성 및 상관성을 분석하고자 하며, 무엇보다 한반도 근해의 해수면 온도와의 직 간접적인 개연성을 살펴봄으로서 보다 효과적인 강수량 예측을 위한 하나의 변수로서의 가능성을 평가하고자 한다. 이를 위해 다양한 분석 방법 즉, 연주기를 제거하지 않은 자료의 선형적인 지체 상관 분석, 연주기를 제거하기 위해 표준화 된 자료의 지체 상관 분석 및 비모수적 상관분석을 수행하였다. 연주기를 제거하지 않은 자료의 경우 매우 강한 상관관계를 나타내었지만 이는 주로 계절 특성으로 인한 것으로 사료된다. 그러나 연주기를 제거한 Anomaly는 상대적으로 매우 작은 상관성을 보이고 있으나 유의성 검토를 통해 통계적으로 유의한 관계가 존재함을 확인 할 수 있었다. 따라서 강수량의 예측을 하나의 변수로서 이용이 가능할 것으로 사료되나 근해뿐만 아니라 한반도 기상의 연관성을 갖는 타 지역기상인자와의 보다 통합적인 검토가 필요하다 하겠다.

  • PDF