• 제목/요약/키워드: 강수량관측망구축

검색결과 26건 처리시간 0.039초

강우장의 연속 이류특성을 활용한 레이더 강수량 예측성 평가 (Radar rainfall forecasting evaluation using consecutive advection characteristics of rainfall fields)

  • 김태정;김장경;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.39-39
    • /
    • 2021
  • 기상재해를 극소화하기 위해서는 그 원인이 되는 기상현상의 규모와 거동을 명확히 감시하고 분석하여 신뢰성 있는 예측정보가 제공되어야 한다. 최근 위험기상 발생빈도가 증가하여 초단기 및 위험기상 예보의 정확도 향상을 위한 고품질 레이더 정보 활용 연구가 활발하게 진행되고 있다. 레이더는 전자파를 이용하여 강우의 양과 분포, 이동특성을 관측하는 장비로써 우리나라는 초단기적 위험기상 대응능력 향상을 추진하기 위한 목적으로 첨단 성능의 이중편파레이더 관측망을 구축하고 있다. 국내 기상관측용 레이더는 기상예보(기상청), 홍수예보(환경부), 군 작전 기상지원(국방부) 등으로 각 기관이 개별적으로 설치운영 하고 있다. 본 연구에서는 관계부처에서 운영하고 있는 레이더의 합성장을 이용하여 강수장의 상관성을 기반으로 이류(advection) 특성을 도출하였다. 정확도 있는 이류특성을 도출하기 위하여 시간해상도는 10분을 적용하였으며 가우시안 필터링 기법을 적용하여 강수장 상관분석을 수행하였다. 호우와 태풍을 대상으로 강수장의 이류패턴을 추출하여 강수장의 이동방향 및 속도를 고려한 강수량 예측기법의 적용성을 평가하였다. 본 연구 결과는 격자형 강수예측정보를 제공하여 AI 홍수예보 및 수치예보 모델의 초기조건 입력 등에 활용되어 기후변동성에 따른 대국민 안전 실현을 확보하는데 기후변화 대응전략의 핵심기술로 활용될 수 있을 것으로 판단된다. 덧붙어, 4차 산업혁명에 따른 수문기상 빅 데이터(big data) 통합 플랫폼을 구축하여 고해상도 홍수대응 기술 및 GIS 및 모바일 시스템을 연계한 실시간 기후재해 예·경보가 가능할 것으로 사료된다.

  • PDF

복합유역 물수지 해석을 위한 SWAT-K 모형의 적용성 분석 (An Application of SWAT-K Model for Agricultural Watershed)

  • 박기욱;김동주;조진훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1178-1182
    • /
    • 2008
  • 본 연구에서는 SWAT 모형의 국내 적용을 위해 농촌용수지구의 수문관측자료를 이용하여 입력자료를 구축하고, 기존 유출량 산정모형과 산정결과를 비교하였다. 모형을 적용을 위한 대상지구는 경기 평택, 용인에 위치한 이동저수지를 포함하는 용남용수구역을 선정하였다. 본 대상지구는 2001년 이후 농업지역의 수문관측을 위해 계측망을 설치하고 운영하고 있는 지구로써 저수위, 하천수위, 강수량 등의 관측을 실시하고 있다. 모형의 입력자료는 기존의 GIS 자료와 대상지구에서 관측된 강수량 자료를 이용하여 구축하였고 증발산량 산정에 필요한 다른 기상자료는 인근 수원측후소의 자료를 수집하고 있다. 모형을 통해 산정된 유출량은 덕성교, 재인교, 묵방교, 미산교의 네 지점에서 측정한 유량자료를 이용하여 비교하였다. 농업지역에서 저수지 운영 및 공급량 산정을 위해 많이 쓰이는 HOMWRS 모형과 비교한 결과 평균유출량이 덕성교 지점의 경우 1,651천$m^3$, 묵방교는 619천$m^3$이며 HOMWRS의 경우 덕성교 3,155천$m^3$, 묵방교 885천$m^3$로 각각 산정되었고, 이 지점의 실측 유출량은 덕성교 3,500천$m^3$, 묵방교 1,610천$m^3$로 실측값의 47%, 38%로 각각 산정되어 총유출량은 큰 차이를 보이고 있다. SWAT 모형으로 일별 장기유출량을 추정한 결과 저수지가 설치되어 있지 않은 미산교, 묵방교에서의 일별, 월별 장기유출량은 실측치와 매우 가까운 값을 보였다. 그러나 상류지점에 저수지가 설치되어 있어 저수지의 영향을 받고 있는 덕성교와 재인교에서의 장기유출량은 관측값과 유사한 경향을 보이고 있으나 실측값과는 차이를 보이고 있었다. 이는 저수지 및 관개수량의 환원수량 등을 고려하지 않은 채 유출량을 산정한 결과로 SWAT 모형의 관개지구에 적용을 위해서는 저수지의 영향, 환원수량 및 관개용수 공급에 대한 고려가 필요하다.

  • PDF

다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측 (Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin)

  • 김철겸;이정우;이정은;김현준
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.723-736
    • /
    • 2022
  • 본 연구에서는 금강권역을 대상으로 최대 12개월까지 선행예측이 가능한 월 강수량 예측모형을 구축하였으며, 예측모형 구축에는 다중회귀분석과 인공신경망의 두 가지 통계적 기법을 적용하였다. 예측인자 후보로 NOAA에서 제공하는 글로벌 기후패턴 39종과 금강권역에 대한 기상인자 8종 등 총 47종의 기후지수를 활용하였다. 예측대상월을 기준으로 과거 40년간의 월 강수량과 기후지수와의 지연상관성 분석을 통해 상관도가 높은 기후지수를 예측인자로 활용하여 다중회귀모형 및 인공신경망 모형을 구축하였다. 1991~2021년에 대해 매월 예측결과의 평균값과 관측값과의 적합도를 분석한 결과, 다중회귀모형은 PBIAS -3.3~-0.1%, NSE 0.45~0.50, r 0.69~0.70으로 분석되었으며, 인공신경망모형은 PBIAS -5.0~+0.5%, NSE 0.35~0.47, r 0.64~0.70로, 다중회귀모형에 의해 도출된 예측치의 평균값이 인공신경망모형보다 관측치에 좀 더 근접한 것으로 나타났다. 각 월의 예측범위 안에 관측치가 포함될 확률을 분석한 결과에서는 다중회귀모형이 57.5~83.6%(평균 72.9%), 인공신경망모형의 경우에는 71.5~88.7%(평균 81.1%)로 인공신경망모형 결과가 우수한 것으로 나타났다. 3분위 예측확률을 비교한 결과는 다중회귀모형의 경우에는 25.9~41.9%(평균 34.6%), 인공신경망모형은 30.3~39.1%(평균 34.7%)로 비슷하며, 두 모형 모두 평균 33.3% 이상으로 월 강수량에 대한 장기예측성을 확인 할 수 있었다. 이상과 같이 두 모형의 예측성 차이는 비교적 크지 않은 것으로 나타났으나, 예측범위에 대한 적중률이나 3분위 예측확률로부터 판단할 때 예측성에 대한 월별 편차는 인공신경망모형의 결과가 상대적으로 작게 나타났다.

ANFIS 모형을 이용한 월강수량 예측 (Monthly Precipitation Forecast Using Genetic Algorithm)

  • 신주영;정창삼;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF

SWAT 모형을 이용한 메콩강 유역 격자형 강수 자료 강우-유출 성능 평가 (Evaluation of rainfall-runoff performance for gridded precipitation datasets in the Mekong River Basin Using SWAT Model)

  • 김영훈;정성호;하진경;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2022
  • 정확한 강우-유출 해석은 하천 홍수예경보, 댐 유입량 산정 및 방류량 결정 등 수자원 관리 및 계획수립에 있어 중요하며 밀도높은 관측망(raingauge network)으로 부터 수집된 강우 자료는 강우-유출 해석의 가장 중요한 기초 자료로 활용된다. 본 연구 대상 지역인 메콩강 유역은 국가공유하천(6개국: 중국, 라오스, 태국, 미얀마, 베트남, 캄보디아)은 기초 자료 수집이 어렵고, 구축된 자료의 양적, 질적 품질이 국가별로 상이하여 수문해석 결과의 불확실성을 높일 우려가 있다. 최근 원격탐사 기술의 발달로 격자형 글로벌 강수자료의 획득이 용이해졌으며, 이를 활용한 다양한 연구들이 수행된 바 있다. 이에 본 연구에서는 준 분포모형인 SWAT (Soil & Water Assessment Tool) 모형을 활용하여 격자형 위성 강수 자료(TRMM, GSMaP, PERSIANN-CDR)와 격자형 지점 강수 자료(APHRODITE, GPCC)의 메콩강 유역 강우-유출 모의에 대한 성능을 평가하였다. 유출량 산정을 위한 관측소로는 Luang Prabang, Pakse, Stung Treng, Prek Kdam 관측소를 선정하였으며 지점강수량 정보가 비교적 충분한 2000-2007년을 대상으로 매개변수 보정(2000-2003) 및 유출모의 검증(2004-2007)을 수행하였다. 격자형 강우를 이용한 유출분석 결과, APHRODITE, GPCC 및 TRMM이 다른 격자형 강수 자료(GSMaP, PERSIANN-CDR)보다 우수한 성능을 보였다.

  • PDF

LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의 (Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble)

  • 안성욱;강동호;성장현;김병식
    • 한국수자원학회논문집
    • /
    • 제57권2호
    • /
    • pp.127-137
    • /
    • 2024
  • 수자원 관리를 위해 주로 사용되는 물리 모형은 입력자료의 구축과 구동이 어렵고 사용자의 주관적 견해가 개입될 수 있다. 최근 수자원 분야에서 이러한 문제점을 보완하기 위해 기계학습과 같은 자료기반 모델을 이용한 연구가 활발히 진행되고 있다. 본 연구에서는 관측자료만을 이용하여 강원도 삼척시 오십천 유역의 장기강우유출모의를 수행했다. 이를 위해 기상자료로 3개의 입력자료군(기상관측요소, 일 강수량 및 잠재증발산량, 일강수량 - 잠재증발산량)을 구성하고 LSTM (Long Short-term Memory)인공신경망 모델에 각각 학습시킨 결과를 비교 및 분석했다. 그 결과 기상관측요소만을 이용한 LSTM-Model 1의 성능이 가장 높았으며, 여기에 MLP 인공신경망을 더한 6개의 LSTM-MLP 앙상블 모델을 구축하여 오십천 유역의 장기유출을 모의했다. LSTM 모델과 LSTM-MLP 모형을 비교한 결과 두 모델 모두 대체적으로 비슷한 결과를 보였지만 LSTM 모델에 비해 LSTM-MLP의 MAE, MSE, RMSE가 감소했고 특히 저유량 부분이 개선되었다. LSTM-MLP의 결과에서 저유량 부분의 개선을 보임에 따라 향후 LSTM-MLP 모델 이외에 CNN등 다양한 앙상블 모형을 이용해 물리적 모델 구축 및 구동 시간이 오래 걸리는 대유역과 입력 자료가 부족한 미계측 유역의 유황곡선 작성 등에 활용성이 높을 것으로 판단된다.

서울 강우자료의 시·공간적 특성에 따른 유출분석 (Analysis of runoff according to the time and space characteristics of hourly rainfall data in Seoul)

  • 현정훈;박희성;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.216-216
    • /
    • 2019
  • 최근 이상 기후로 인하여 홍수피해가 많이 발생 하고 있다. 특히 도시유역의 도시화로 인해 불투수면적이 증가하여 내수 침수도 증가하였다. 이로 인하여 재산피해와 인명피해가 증가하면서 전 세계적으로 홍수 저감 연구가 진행 되고 있다. 강우의 시 공간적인 특성을 파악 하여 강우 사상을 정의 한다면 도시홍수 저감 에 있어 도움이 될 것이라 판단된다. 우리나라 서울 지역의 설계 강우량을 산정하기 위해 서울기상청에서 제공하고 있는 ASOS(Automated Surface Observing System) 를 사용해 왔다. 하지만 ASOS을 사용하게 되면 강수량의 공간 특성을 고려하기 어렵지만 AWS(Automatic Weather Stations) 는 세밀한 관측망을 가지고 있어 공간적 특성을 고려할 수 있다. 본 연구에서는 서울 기상청에서 제공하고 있는 강우 자료의 20개년 연속된 강우자료를 통해 강우자료를 구축 하였다. 서울지역의 유역을 선정하였으며 도시유역 강우-유출 해석에 많이 사용되는 EPA-SWMM 모형에 ASOS 와 AWS 강우자료를 적용하여 유출 분석을 하였다. 이러한 자료를 바탕으로 공간 특성 분석을 실시하여 더욱 세밀한 설계 강우량 산정에 도움을 있을 것으로 판단된다.

  • PDF

광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측 (Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data)

  • 김광섭;조소현
    • 한국수자원학회논문집
    • /
    • 제45권7호
    • /
    • pp.631-641
    • /
    • 2012
  • 본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.

산림재해 방지와 산림관리를 위한 산악기상정보 (Mountain Meteorology Data for Forest Disaster Prevention and Forest Management)

  • 장근창;민성현;김인혜;천정화;원명수
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.346-352
    • /
    • 2022
  • 우리나라의 산림은 지형적으로 복잡한 특성을 가지고 있기 때문에 효율적인 산림관리를 위해서는 산림지역에 특화된 기상관측이 중요하다. 특히, 최근 기후변화에 따른 건조와 집중호우 등 이상기상 현상으로 산림재해가 발생할 수 있기 때문에, 이를 효과적으로 예방하고 관리하기 위한 대책 마련이 필요하다. 이를 위해 산림청에서는 산악지역에 대한 기상 자료를 수집하기 위해 2012년부터 산악기상관측망 구축을 시작했고, 현재 464개소의 산악기상관측망을 운영하고 있다. 산악기상관측망에서는 기온, 상대습도, 풍향과 풍속, 강수량, 지면온도, 대기압 등 7개 기상요소를 관측한다. 기상 자료는 1분 간격의 실시간 자료를 수집하며, 자료의 신뢰도 확보를 위한 품질관리 시스템을 운영하고 있다. 산악기상관측 자료의 품질관리는 물리한계검사, 단계검사, 내적 일치성검사, 지속성검사, 기후범위검사, 중앙값 필터검사 등 6가지 품질검사를 수행한다. 고품질 산악기상정보는 공동활용을 위해 산악기상정보시스템과 공공데이터 포털을 통해 자료를 공개하고 있다. 산악지역에 특화된 산악기상정보는 산림관리 및 산림재해 방지뿐만 아니라 국민 생활안전과 산림휴양⋅레저 등 다양한 분야에 활용될 수 있을 것으로 기대된다.

몬테카를로 시뮬레이션을 이용한 지역빈도해석 기법의 성능 분석: 홍수지수법과 인공신경망 모델 (The assessment of performances of regional frequency models using Monte Carlo simulation: Index flood method and artificial neural network model)

  • 이주형;서미루;박재현;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2021
  • 본 연구는 지역빈도해석을 기반으로한 인공신경망 모델과 기존에 널리 사용되는 방법인 홍수지수법의 성능을 몬테카를로 시뮬레이션을 이용하여 평가하였다. 컴퓨터 기술이 발달함에 따라 인공지능에 대한 접근성이 좋아지며 수문학을 포함한 다양한 분야에 적용되고 있다. 인공지능을 이용하여 강수량 및 유량 등 다양한 수문자료에 대한 예측이 이루어지고 있으나 빈도해석에 관한 연구는 비교적 적다. 본 연구에서 사용된 인공 지능 모델은 대상 지점의 지형학적 자료와 수문학적 자료를 이용하여 인공신경망을 통해 지점의 확률강우량(QRT-ANN) 및 확률분포형의 매개변수 (PRT-ANN)를 추정한다. 지형학적 자료로는 위도, 경도 그리고 고도가 사용되었으며 수문학적 자료로는 대상 지점의 최근 30년 일일연최대강우량을 사용하였다. 지역빈도해석의 정확도는 지역 내 통계적 특성이 비슷한 지점들이 포함되면 될수록 높아진다. 통계적 특성으로는 불일치 척도, 이질성 척도, 적합성 척도가 있으며 다양한 조건의 통계적 특성에 따른 세 개의 지역빈도해석 방법의 성능을 평가하고자 하였다. 대상 지역 내 n개의 지점이 있다고 가정하였을 때, 홍수지수법의 경우 n-1개의 지점으로 추정한 지역 성장곡선을 이용하여 나머지 1개 지점의 확률강우량을 산정할 수 있으며 인공신경망 모델들 또한 n-1개 지점들의 자료를 이용하여 모델을 구축한 뒤 나머지 지점의 확률강우량 및 확률분포형의 매개변수를 예측할 수 있다. PRT-ANN의 경우 예측된 매개변수를 이용하여 확률강우량을 산정하며 시뮬레이션 시행마다 발생시킨 자료의 지점빈도해석 결과에 대한 나머지 세 방법의 평균 제곱근 상대오차 (Relative root mean square error, RRMSE)를 계산하였다. 몬테카를로 시뮬레이션을 이용한 성능 분석을 통하여 관측값의 다양한 통계적 특성에 맞는 지역빈도해석 방법을 제시할 수 있을 것으로 판단된다.

  • PDF