• Title/Summary/Keyword: 강섬유 보강 철근콘크리트

Search Result 122, Processing Time 0.02 seconds

Fatigue Evaluation of Precast Concrete Deck Connection using Ultra-High Performance, Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트를 적용한 프리캐스트 바닥판 접합부의 피로성능 평가)

  • Lee, Jun-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.275-285
    • /
    • 2015
  • This experimental study presents the fatigue evaluation of a precast deck connected using Ultra-High Performance, Fiber Reinforced Concrete (UHPFRC). Four types of two identical large-scale specimens were fabricated with simplified splice rebar details which had a short splice length of ten times rebar diameter. The flexural behavior of each type of specimens until failure was investigated and fatigue behavior of the same type of specimens was then evaluated using two-million cyclic loading. In the flexural tests, tensile rebars exhibited the deformation exceeding yielding strain but failure mode related to the splice details was not observed in spite of such a short splice length. In the fatigue tests, damage was not appreciably accumulated by the cyclic loading except initial flexural cracks and the stress variations in tensile rebars was less than the allowable stress range. These experimental results demonstrate that all types of specimens exhibited acceptable fatigue performance and indicate that enhanced mechanical properties of ultra-high performance material permits to use a simplified splice details along with short joint width.

A Study on Crack Properties iber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 균열특성에 관한 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, the crack properties fiber reinforced concrete(SFRC) beams by experimental method is discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, SFRC has better crack properties than that of reinforced concrete(RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fibers, strength of concrete and the stress level. Crack width and number of cracks in SFRC beams have been evaluated from experimental test data at various levels of stress for the tested beams.

  • PDF

Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams using Industrial By-products and Recycled Fine Aggregates (산업부산물과 순환잔골재를 적용한 강섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, seven R/C beams, designed by the steel fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength were assessed. Test results showed that test specimens (BSSR-20, 40, 60, 80) were increased the maximum load carrying capacity by 2~9% and the ductility capacity by 10~22% in comparison with the standard specimen (BSS) respectively. And the specimens (BSSR-100) was decreased the maximum load carrying capacity by 5% and the ductility capacity by 44% in comparison with the standard specimen (BSS) respectively.

A Study on Fatigue Behavior of Two-Span Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 2경간 연속보의 피로거동에 관한 연구)

  • Kwak, Kae-Hwan;Cho, Seon-Jeong;Seok, In-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • As concrete structures are getting larger, higher, longer, and specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content by 0%, 0.75%, 1.00%, 1.25%, by experimental study of Two-spans Beam with Steel Fibrous with repeated loads. The ultimate load and the initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight was observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cycle loading to deflection relation and strain relation was observed by fatigue test. As the result of fatigue test, Two-spans Beam without Steel Fibrous was failed at 60~70% of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 67.2% by S-N curve. On the other hand, that with Steel Fibrous was failed at 65~85% of the static ultimate strength and it could be concluded fatigue strength to two million cycle around 71.7%.

Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement (보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구)

  • Lee, Jong-Han;Kwon, Hyuck Bae;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.39-48
    • /
    • 2015
  • Reinforced concrete (RC) structures strengthened with FRP materials would cause the loss of the reinforcing effect and the sudden failure of the structure due to the debonding of FRP. The debonding fracture strength of the FRP-strengthened concrete structures has been evaluated using the same strength method as applied in RC structures based on the debonding strain of FRP. However, the values of the FRP debonding strain are different according to design guidelines. Thus, this study carried out an experimental study on RC beams reinforced with GFRP and evaluated the debonding fracture strength of the strengthened beams from each design guideline. Since the debonding failure occurs prior to reaching the ultimate value of concrete compressive strain, this study accounts for the nonlinear stress distribution of concrete. This study also proposed equations that can evaluate the debonding strength of GFRP-strengthened RC beams with similar safety to the ultimate flexural strength of non-strengthened RC beams.

Bond Properties of GFRP Rebar with Cover Thickness and Volume Fraction of Steel Fiber (강섬유 혼입률과 피복두께에 따른 GFRP 보강근의 부착특성)

  • Choi, Yun-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.761-768
    • /
    • 2012
  • The purpose of this study is to investigate bond properties of GFRP used in SFRC (Steel fiber reinforced concrete) and normal concrete. The experimental variables were rebar diameter (D13, D16), steel fiber volume fraction (0~2%) and cover thickness ($1.5d_b$, $5.4d_b$). The experimental results showed a different failure mode depending on the cover thickness. Through the tested specimens, splitting failure occurred for the specimens with small cover thickness and pull out failure occurred in the specimens with large cover thickness. Introduction of steel fiber caused the specimens to have more ductile behavior of bond stresss-lip after peak stress, but they did not increase the bond strength significantly. These failure modes were shown in both steel reinforcement and GFRP. However, from the difference of micro structure of bond failure mechanism between steel rebar and GFRP rebar, more ductile behavior was observed in GFRP-specimens after maximum bond strength was reached.

Long-term Behavior of Deck-plate Concrete Slab Reinforced with Steel Fiber (강섬유 보강 데크플레이트 콘크리트 슬래브의 장기 거동)

  • Hong, Geon-Ho;Hwang, Seung-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2017
  • Recently, research on the development of a composite slab system for shorting the construction period by simplifying the process by omitting the form work and the reinforcement placing is underway. The purpose of this study is to evaluate the long-term behavior of a simplified slab system that replaces the form work and tensile reinforcement using structural deck-plate and replaces the temperature reinforcement using steel fiber reinforced concrete. In the conventional composite deck-plate slab method, w.w.f is generally used for crack control by drying shrinkage. But previous research results by various researchers were pointed out it is not effective to control the shrinkage and temperature cracking. In this study, the long-term cracking and structural behavior of steel fiber reinforced deck plate slab specimen with two continuous spans constructed under typical load conditions were evaluated. Experimental results showed that the number and width of long-term cracks decreased remarkably in the simplified slab specimen, and the deflection was also decreased compared with conventional RC slab specimen. However, in the continuous end of the slab where the negative moment is applied, it is analyzed that reinforced details are necessary to control the crack width in the service load and to recover deflection at load removal.

Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates (순환골재를 사용한 강섬유보강 콘크리트보의 구조 성능 평가)

  • Shin, Jae-Lin;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.-K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.215-227
    • /
    • 2015
  • In this study, twenty four steel-fiber reinforced concrete (SFRC) beams using recycled coarse aggregates (RCA) were manufactured to examine the shear behavior of SFRC and to determine the beams' ultimate shear strengths. The RCA replacement ratio was fixed at 30%. The variables studied in this investigation are: (1) shear span-to-depth ratios (a/d) of 2, 3 and 4; (2) longitudinal reinforcement ratio (${\rho}$) of 0.008 and 0.0127; and (3) steel fiber volume fractions ($V_f$) of 0, 0.5, 0.75 and 1%. Test results were analyzed and then compared with the findings and proposals of various other researchers. Based on the test results, the more steel fiber volume fraction is increased, the large crack resistance and shear strength are exhibited. Most of the experimental data is higher than the theoretical value. Therefore, steel-fiber reinforced concrete beams using recycled coarse aggregates are suggested to be applied for building structures.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete (강섬유로 보강된 초고성능 콘크리트의 휨 거동에 대한 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kang, Su-Tae;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.737-744
    • /
    • 2009
  • In this study, the flexural behavior of steel fiber reinforced ultra high performance concrete (UHPC) was investigated. It presents experimental results of steel fiber reinforced UHPC with steel fiber content of 2% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing more information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance and deflection in structural code in the future. The experimental results show that UHPC is in favor of cracking behavior and ductility of beams, and that the ductility indices range from 6.29 to 10.44, which means high ductility of UHPC. Also, the flexural rigidity of beam whose cast is begun from end of beam is larger than that of beam whose cast is begun from midspan of beam. This result represents that the flexural rigidity is affected by the placing method of UHPC.

Experimental Method for Evaluating Debonding Strength of FRPs Used for Retrofitting Concrete Structures (콘크리트 휨부재 보강용 FRP의 부착성능 평가를 위한 실험방법 연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • This study proposes a experimental method to evaluate bonding strength of FRPs used for retrofitting concrete structures. Specimens are designed so that debonding failure of FRPs can be induced from reinforced concrete beams retrofitted with two layers of carbon and glass FRPs. And three-point loading tests are performed to see if debonding failure with proper debonding strength is observed from the specimens. The test results show that the tested beams are failed due to debonding of FRPs, therefore, the proposed test method is capable of evaluating debonding strength of FRPs using relatively small normal strength concrete beams.