• Title/Summary/Keyword: 강봉 트러스 시스템

Search Result 3, Processing Time 0.063 seconds

In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems (강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • This experimental study was conducted to evaluate the in-plane and out-of-plane seismic performances of an unreinforced masonry walls (URMs) strengthened with prestressed steel-bar truss systems developed in the present investigation. The truss systems were installed on both faces of the walls. All the wall specimens were subjected to lateral in-plane or out-of-plane cyclic loads at the fixed gravity stress of 0.25 MPa. The seismic performance of the strengthened specimens was compared to that measured in the counterpart URM. When compared with the lateral load-displacement curve of the URM, the strengthened walls exhibited the following improvements: 190% for initial stiffness, 180% for peak strength, 610% for accumulated energy dissipation capacity, and 510% for equivalent damping ratio under the in-plane state; the corresponding improvements under the out-of-plane state were 230% for initial stiffness, 190% for peak strength, 240% for accumulated energy dissipation capacity, and 120% for equivalent damping ratio, respectively. These results indicate that the developed technique is very promising in enhancing the overall seismic performance of URM.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.