• Title/Summary/Keyword: 강변 여과

Search Result 132, Processing Time 0.024 seconds

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

Development of Site Analysis System for Conjunctive Use of Surface and Ground water (지표수-지하수 연계 이용을 위한 적지분석 시스템 개발)

  • Lee, Sang Il;Lee, Sang Sin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.878-882
    • /
    • 2004
  • 지하수를 이용한 물 문제 해결 방법은 여러 수공학자들에 의해 연구되어 왔고 많은 성과를 이루었다. 하지만, 과도한 지하수 개발은 새로운 공학적 문제를 야기하게 되어 각 수자원에 내한 개별적인 분석 단계를 지나 여러 수자원을 연계하여 이용할 수 있는 기법들이 연구되고 있다. 이 방법 중 하나로 지표수와 지하수를 연계 이용하는 방법이 연구되었고, 개발 대상 지역에 대한 우선순위 결정을 위해 계층분석과정(Analytic Hierarchy Process, AHP)이 적용되었다. 이리한 적지 분석을 위한 시스템(SASCU)을 GIS와 연계하여 개발함으로써 개랄 가능 후보지에 대한 개발 우선순위 결정에 도움이 괼될것으로 사료된다.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Analysis of the Correlation between Geological Characteristics and Water Withdrawals in the Laterals of Radial Collector Well (방사형집수정의 수평집수관에서 지질특성과 취수량의 상관관계 분석)

  • Kim, Tae-Hyung;Jeong, Jae-Hoon;Kim, Min;OH, Se-Hyoung;Lee, Jae-Sung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.201-215
    • /
    • 2014
  • This study was performed to investigate the correlation between hydraulic conductivity and the flow rate of an aquifer, with the flow rate calculated from the laterals of the radial collector well using data obtained by the development project of riverbank filtration (Second Phase) in Changwon City. The hydraulic conductivity was empirically calculated from unconsolidated sediments collected from a sandy gravel layer along the middle-to-downstream sections of the Nakdong River. The Beyer equation produced the most suitable hydraulic conductivity from the various empirical formulas employed. The calculated hydraulic conductivity ranged from 0.083 to 0.264 cm/s, with an average value of 0.159 cm/s, suggesting that the aquifer in the study area possesses a high permeability with a good distribution of sandy gravel. The relationship between the calculated hydraulic conductivity in the aquifer and the entrance velocity into the screen, the flow rate was analyzed through the linear regression analysis. From the result of regression analysis, it showed that the hydraulic conductivity and the entrance velocity into the screen and the flow rate have a linear regression equation having about 72% of the high correlation. The result of verification in the measured data between each variable showed a high suitability from being consistent with the approximately 72% in the linear regression analysis. This study demonstrates that the groundwater flow rate can be estimated within the laterals of the radial collector well using a linear regression equation, if the hydraulic conductivity of the aquifer is known. This methodology could thus be applicable to other aquifers with hydraulic conductivity and permeability parameters similar to those in the present study area.

Cause of Groundwater Yield Reduction in a Collector Well Considering Sediment's Composition and Hydrogeochemical Characteristics (지층 및 이화학 특성을 고려한 방사형 집수정의 취수량 감소 원인 분석)

  • Kim, Gyoo-Bum;Lee, Chi-Hyung;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2017
  • The cause of yield reduction in a collector well, which is located in Anseong-cheon watershed in Kyunggi province, is studied by using aquifer sediments' composition and hydraulic conductivity near four horizontal wells, no. 1, no. 4, no. 6, and no. 7 wells. During test-pumping periods, groundwater yield is reduced with a trend of $12.4m^3/d/d$ at no. 1, $2.3m^3/d/d$ at no. 4, $24.4m^3/d/d$ at no. 6, and $187.3m^3/d/d$ at no. 7 and no. 7 well shows the biggest reduction. The sediments along no. 7 horizontal well have low hydraulic conductivity and high coefficient of uniformity ($C_u$), and a deviation of $C_u$ along the well is also large. This characteristics can bring the fine particles' movement and make the openings filled. Additionally, high iron ($Fe^{2+}$) content results in a precipitation of iron hydroxides during pumping or injection and they can produce a clogging in sediments. In the future study, the analysis of physical and hydrochemical changes through a long-term pumping procedure will give a more exact interpretation for the cause of yield reduction.

Characteristics of Groundwater Levels Fluctuation and Quality in Ddan-sum Area (낙동강 하중도 딴섬의 지하수위 변동 및 수질 특성)

  • Kim, Gyoobum;Choi, Doohoung;Shin, Seonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Confined aquifer, which is separated with upper clayey or silty materials, is partially distributed at the depths of the sediments in Ddan-sum area on the lower Nakdong river. Measurements of groundwater levels at 13 sites explain that groundwater flow shows seasonally various due to seasonal rainfall and agricultural water use. From 9 long-term monitoring data of groundwater levels at 7 sites, 3 types of groundwater levels time series can be classified using principal component analysis. The first type is seen in the center of Ddan-sum and has a round-shape graph due to a weak response to stream water levels. The second type exists in the outer part of Ddan-sum and shows sharply peak-shape graph due to a rapid and strong response to stream water levels and rainfall. The last type, which is seen in a deep layer, has a periodicity by tital effect. From geochemical analysis at each monitoring sites, [$Ca-HCO_3$] type happens in the center of Ddan-sum far from Nakdong river, and [$Na-HCO_3$] and [$Ca-SO_4(Cl)$] types exist in the outer of Ddan-sum affected by river quality.

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

An Experimental Study on the Performance of Multi-Diameter Lateral for Riverbed Filtration (하상여과용 다직경 수평집수관의 효능에 대한 실험연구)

  • Bae, Gha-Ram;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.359-364
    • /
    • 2012
  • In order to prevent the decrease in well efficiencies due to friction in the axial flow in long, large-diameter laterals, a multi-diameter lateral was devised and tested through lab-scale sand-box experiments to assess its performance. In the experiment, three different production rates were applied over the multi-diameter and the three single-diameter laterals to obtain the hydraulic head distributions for each, which was used to assess the performance of the laterals. Results elucidated that the multi-diameter lateral reduced the material cost by more than a third, in comparison to the single-diameter lateral, while maintaining the production rate at higher than 93%, proving its superiority. Furthermore, results indicated that exit velocities exceeding 0.8 m/sec in horizontal wells tended to distort the hydraulic head distribution near the exit, providing evidence of its inefficiency.

창원시 대산면 강변여과수의 수질과 낙동강 수질의 관련성 연구

  • 장성;함세영;김형수;차용훈;정재열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.451-454
    • /
    • 2004
  • The study aims to assess the quality of bank filtrate in relation to streamflow and physico-chemical properties of the stream. Turbidity, pH, temperature and dissolved oxygen (DO) of Nakdong River and riverbank filtrate were statistically analyzed. The physico-chemical properties of riverbank filtrate were measured from irregularly different seven pumping wells every day. Autocorrelation analyses were conducted to the qualities of stream water and bank filtrated water. Temperature, pH and DO of streamflow shows strong linearity and long memory effect, indicating the effect of seasonal air temperature and rainy season. Temperature of riverbank filtrate shows weak linearity and weak memory, indicating differently from the trend of stream temperature. Turbidity of steramflow shows strong linearity and long memory effect, while turbidity of riverbank filtrate indicates weak linearity and weak memory. Cross-correlation analysis shows low relation between turbidity, pH, temperature and DO of riverbank filtrate and those of streamflow. Turbidity of streamflow was largely affected by the streamflow rate, showing a similar trend with autocorrelation function of streamflow rate. The turbidity of riverbank filtrate has a lag time of 25 hours. This indicates that turbidity of streamflow in a dry season has very low effect on the turbidity of riverbank filtrate, and a high turbidity of the stream in a rainy season has a fairly low effect on the turbidity of riverbank filtrate.

  • PDF

Evaluation of Well Production by a Riverbank Filtration Facility with Radial Collector Well System in Jeungsan-ri, Changnyeong-gun, Korea (경남 창녕군 증산리 일대 방사집수정을 활용한 강변 여과수 개발량 평가)

  • Lee, Eun-Hee;Hyun, Yun-Jung;Lee, Kang-Kun;Kim, Hyoung-Soo;Jeong, Jae-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2010
  • Well production by a riverbank filtration facility with multi-radial collector well systems in Jeungsan-ri, Changnyeong gun, Korea was evaluated. In this study, the drawdown at collector wells due to pumping and groundwater inflow rates along the horizontal arms of the collector wells were computed through numerical simulations. Sensitivities of the well production to hydraulic conductivity and well flow coefficient, which represents the resistance to the flow from the aquifer to the horizontal arms, were analyzed. Simulation results showed that, with given proposed pumping rate conditions, the drawdown in the caisson exceeded maximum drawdown constraints in the study site and the adjustment of the pumping rate at each well is needed. The drawdown is affected by the hydraulic conductivity of the main aquifer and the well flow coefficient, which means the profound field investigation of the study site is needed to accurately estimate the efficiency of riverbank filtration through radial collector wells.