• Title/Summary/Keyword: 강도 증진

Search Result 1,042, Processing Time 0.028 seconds

알칼리-골재팽창을 최소화시키는 포틀랜드 제올라이트 시멘트

  • 한국양회공업협회
    • Cement
    • /
    • s.108
    • /
    • pp.57-60
    • /
    • 1987
  • 이 논문에서는 통상의 포졸란 대신에 제올라이트 물질 즉, 화산 응회암을 적절히 분쇄한 후 혼합해서 만든 시멘트의 특성 변화에 대해 논하였다. 이러한 치환이 알칼리-골재 팽창 반응을 최소화시키고 장기강도를 향상시키는 장점이 있다는 사실도 밝혀냈다. 특히 제올라이트를 미리 열처리해서 첨가했을 때 이러한 팽창감소 효과가 현저하다는 것도 발견하였다. 강도증진 효과는 포졸란 유리상의 활성도에 비해 제올라이트 광물의 활성도가 높기 때문으로 해석되며 팽창의 감소는 비정질 수화 규산염이 먼저 알칼리와 반응을 하는 성질이 있기 때문으로 판단된다.

  • PDF

Mechanical Properties of Recycled Coarse Aggregate concrete using Two-Stage Mixing Approach (TSMA 방법을 이용한 순환 굵은골재 콘크리트의 기계적 성능)

  • Kwon, Seung Jun;Lim, Hee Seob;Lee, Han Seung;Lim, Myung Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2018
  • As the lack of specific aggregation intensifies, the development of alternative resources is urgent. Construction waste is increasing every year, but recycled aggregate is used as a low value added material. Various studies are currently underway at the national level. In this paper, the mechanical performance of the concrete according to the concrete mixing method and the replacement amount of the circulating coarse aggregate was compared and evaluated. Concrete mixing method was normal mixing approach(NMA) method, two-stage mixing approach1 (TSMA1) method, two-stage mixing approach2 (TSMA2) method. Fresh concrete was tested for air content, slump test, and unit volume weight. Compressive strength and flexural strength were tested in hardened concrete. According to the TSMA method, the mechanical performance difference of concrete is shown, and the strength is decreased according to the circulating coarse aggregate replacement amount.

Strength Development and Permeability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 강도 및 투수특성)

  • 윤경구;홍창우;이주형;최상릉
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.299-306
    • /
    • 2002
  • The purpose of this research was to develop a rapid setting cement latex modified concrete (RSLMC) for bridge deck repairing and overlaying. The main experimental variables were latex contents, antifoamer contents and water-cement ratioes. The workability, strength development and permeability were measured as responses. The results showed that latex content increased the slump and reduced the unit water required for same workability. The air contents were measured as 8.0∼9.0% and 2.0∼3.0% without antifoamer and with 1.6∼3.2% of antifoamer, respectively. This resulted in the increment of compressive strength development by 10∼20 %. The flexural strength of RSLMC increased greatly as the latex content increased, but not in compressive strength. The compressive strength and flexural strength developed enough for opening the overlayed RSLMC to the traffic after 3 hours of RSLMC placement. The permeability of RSLMC was evaluated as negligible due to its very low charge passed. Thus, RSLMC could be used at repairing or overlaying the concrete bridge deck at fast-track job sites.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.

Evaluating the Durability of Concrete Combined with Ground Granulated Blast Furnace Slag using Electrolysis Alkaline Aqueous as Mixing Water (전기분해 알칼리수를 배합수로 사용한 고로슬래그 미분말 혼입 콘크리트의 내구성)

  • Jeong, Su-Mi;Kim, Ju-Sung;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This research aimed to enhance the initial strength of concrete that is mixed with ground granulated blast furnace slag, as well as to fortify its resistance to carbonation and chloride ion permeation. To achieve this, alkaline aqueous, produced through the electrolysis of potassium carbonate, was employed as the mixing water in the preparation of concrete. To substantiate the increment in initial strength, compressive strength measurements of the concrete were executed. Additionally, an accelerated carbonation test and a chloride ion permeation resistance test were undertaken. The results confirmed that the initial strength of the concrete, which utilized electrolysis alkaline aqueous as mixing water, exhibited an improvement in comparison to concrete mixed with conventional water. It was also verified that both carbonation resistance and chloride ion permeation resistance showed enhancements.

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.

The Experimental study on the compressive strength of UHPC according to curing method (양생방법에 따른 초고성능 콘크리트 압축강도 발현특성에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gun-Sung;Koh, Gyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.235-236
    • /
    • 2009
  • In this Study, we examined the characteristic of compressive strength according to various curing methods in order to obtain higher strength of UHPC in th e range of 200MPa.

  • PDF

The Analysis of Effect of Biopolymer Treated Soils in Seed Spray Method in the River Embankment (제방 녹화공법에서 바이오폴리머 처리토의 효능 분석)

  • Seo, Seunghwan;Jin, Seungnam;Chang, Ilhan;Chung, Moonkyung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2019
  • Biopolymer based on microbial β-glucan and xanthan gum is effective for vegetation and has a function of enhancing soil strength, which can be used as soil reinforcement and stabilization materials in river embankment. The purpose of this study is to verify the vegetation effect of the surface of levee by biopolymer with seed spraying method. Mixed soils with biopolymer were used to cover the surface of embankments. The strength is higher in biopolymer-treated soil and xanthan gum based biopolymer has advantage for quality control in field scale. In addition, the vegetation of F. arundinacea and L. perenne showed various reactions with types of biopolymers. Biopolymer has a positive effect on the vegetation of them. In contrast, root growth tended to decrease in biopolymer-treated soils. The results indicate that root growth is slow down due to increasing ability to retain water in biopolymer-treated soil. In order to apply biopolymer to river embankment, it is necessary to examine the effects of biopolymers on a wide range of plant species in river embankment.