• Title/Summary/Keyword: 강도발현

Search Result 962, Processing Time 0.028 seconds

Fundamental Properties of Alumina Cement Mortar by Insulation Curing Method under Low Temperature (저온환경에서 알루미나시멘트를 사용한 모르타르의 단열양생에 따른 기초물성 평가)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.419-427
    • /
    • 2017
  • In order to examine the possibility of practical use of aluminate cement concrete at low-temperature environment with insulation method, an experimental studies on flowability, setting time, freezing temperature, size variation and compressive strength of the mortar at low-temperature were conducted. Compressive strength was increased in use of CSA, aluminate cement with gypsum. Workability and physical properties were improved by using aluminate cement and gypsum. In addition, freezing resistance and physical properties were improved by applying the insulation curing method. Especially, when alumina cement and gypsum were used together, the insulation curing method was more effective in improving the compressive strength.

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2014
  • The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

Early Strength Development of Concrete Cured with Microwave Heating Form (마이크로웨이브 발열거푸집을 적용한 콘크리트의 조기강도 발현특성)

  • Koh, Tae Hoon;Hwang, Seon Keun;Moon, Do Young;Yoo, Jung Hoon;Song, Jin Woo;Ko, Ji Soo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.365-372
    • /
    • 2014
  • Technologies for rapid concrete curing using elevated temperature are important for saving cost and time when constricting concrete structures. Recently, a microwave heating form was developed. In this study the early strength of concrete cured by the developed form was experimentally investigated. Large scale mock up tests were conducted six times, and the results were analyzed based on the maturity theory. Logarithmic correlation curves were generated based on the measured strength and estimated maturity. It was confirmed that the strength development of the concrete cured by microwave heating form can be estimated by the equivalent age theory usually applied to steam-curing technology. By using the microwave heating form, one day at most is enough to get the required strength for the safe removal of forms, even in cold weather.

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete (콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Ha, Jung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.379-386
    • /
    • 2020
  • The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

Strength Development and Hardening Mechanism of Alkali Activated Fly Ash Mortar (알카리 활성화에 의한 플라이애쉬 모르타르의 강도 발현 및 경화 메커니즘)

  • Jo, Byung-Wan;Park, Min-Seok;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.449-458
    • /
    • 2006
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the cement. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_2\;and\;Al_2O_3$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^-$ through alkali activators. Alkali activators were used for supplying it with additional $OH^-$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also, according to scanning electron microscopy and X-Ray diffraction, the main reaction product in the alkali activated fly ash mortar is Zeolite of $Na_6-(AlO_2)_6-(SiO_2)_{10}-12H_2O$ type.

Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design (고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성)

  • Jeong, Yeon-Ung;Oh, Sung-Woo;Cho, Young-Keun;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.585-593
    • /
    • 2021
  • This study investigates the compressive strength of high-strength cement composites with 64 mixture designs and 2 curing conditions. The cement composites were designed with varying water-to-binder ratios, silica fume content to cement, and binder content per unit volume of cement composite to explore compressive strength development depending on its mix design. An increase in the water-to-binder ratio decreased the compressive strength of the composites, having consistency with the trend in normal concrete. The compressive strength increased with ages at an ambient curing temperature, but it was not identified at high-temperature curing. The compressive strength development was negligible in case that silica fume content to OPC is 15%~25%, but a decrease in the con ten t below 15% reduced compressive stren gth. It was more obvious in the specimen of low water-to-binder ratio. The specimen with 840kg/m3 of binder content per unit volume had the highest compressive strength in this study, and the decrease in binder content reduced the compressive strength of high strength cement composites in low silica fume content.

Strength Development Properties of Alkali-Activated Slag Mortar by Curing Conditions (양생조건에 따른 알칼리활성슬래그 모르타르의 강도발현 특성)

  • Song, Jin-Gyu;Kim, Byeong-Jo;Oh, Myeong-hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.216-217
    • /
    • 2015
  • This study consist of research on the strength development properties of alkali activated slag(AAS) by differential combination of activators, initial protecting and curing conditions. 3 type of binders cured in the atmosphere, underwater and sealed were estimated compressive strength of 3, 7 and 28 days. Test results showed that strength development properties of binders varied with initial protecting and curing conditions because of ionized anions in pore water.

  • PDF

Strength Development of Dry-Mixed Earthen Concrete Incorporating Red Mud and Recycled Asphalt Concrete Aggregates (폐아스콘 순환골재를 활용한 레드머드 혼입 건식 흙콘크리트의 강도 발현 특성)

  • Kang, Suk-Pyo;Park, Kyu-Eun;Kim, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.403-411
    • /
    • 2024
  • This study investigated the use of recycled aggregate from waste asphalt concrete in dry soil concrete mixed with red mud. The results showed that dry soil concrete utilizing waste asphalt recycled aggregate had relatively lower compressive strength compared to that using crushed aggregate. However, dry soil concrete mixed with red mud using waste asphalt recycled aggregate achieved a compressive strength of over 18.0MPa, meeting the highest performance standard for parking lot use, when the cement content was more than 250kg/m3.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

Correlation Between the Expression of Epidermal Growth Factor Receptor and MR Features in Glioma (신경교종에서 표피성장인자수용체의 발현도와 자기공명영상 소견의 상관관계)

  • 김범수;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.125-129
    • /
    • 1997
  • Purpose: The aim of this study was to find correlation between the expression of epidermal growth factor receptor (EGFR) and MR findings in the brain glioma. Materials and Methods: MR features including edema, margin, necrosis, heterogeneity, hemorrhage and contrast enhancement were retrospectively analyzed with preoperative MR images in 41 patients with proven brain gliomas (8 low grade astrocytomas, 12 anaplastic astrocytomas, 21 glioblastoma multiformes). Immunohistochemical study of EGFR was done and their expressions were graded by both stained distribution and intensity. Correlation analysis between the MR features and EGFR expressions was done. Results: Peritumoral edema was correlated with both distribution (r=0.71, p=0.00) and stain intensity (r=0.69, p=0.00) of EGFR expression. Other MR features showed no statistical correlation with EGFR expression. Conclusion: MRI is useful in evaluation of brain glioma, and peritumoral edema is useful finding that suggests EGFR expression as well as malignant histopathologic grade of the tumor.

  • PDF