• Title/Summary/Keyword: 강구조 설계

Search Result 658, Processing Time 0.021 seconds

Evaluation of Judging Structural Performance Based Design in Steel Structure (강구조 건축물의 성능기반설계를 위한 성능규정치의 평가)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.557-560
    • /
    • 2009
  • 본 연구에서는 건물의 규모, 용도 및 형식 등에 따라 다양하게 요구되는 성능에 대응할 수 있도록 하기 위한 성능설계에 대한 개념을 검증하고, 강구조 건축물의 특성을 고려한 성능레벨 및 성능한계에 대한 분류방법을 제안하였다. 또한 강구조 건축물의 경우 강도가 높고 경량인 특성에 의해 다른 구조형식에서는 크게 고려하지 않아도 되는 거주성능 및 진동특성을 제어하여 기능을 유지하기 위한 성능레벨을 설정하여 구조물이 항복하기 전의 성능레벨을 기능유지 및 무손상의 2단계로 제시하고, 이 때의 한계치를 기능한계 및 손상한계로 구분하였다. 강구조 건축물의 손상한계를 정의하기 위해 강구조 건축물의 설계 예를 이용하여 항복 층간변형각을 조사하였다. 그 결과 구조물의 손상발생을 억제할 수 있는 손상한계를 규정하기 위해 주로 사용하고 있는 층간변형각은 구조형식 및 설계방법에 따라 편차가 크게 나타나고 있으므로 손상한계치의 층간변형각을 임의로 설정하는 것은 매우 어려우며 향후 이에 대한 해석적, 실험적 검증이 필요할 것으로 판단되었다.

  • PDF

Optimum Design of Steel-Deck System for Two-Story Roads (2층도로용 강구조 덱 시스템의 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Kim, Hyun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.553-564
    • /
    • 1998
  • Recently, more and more steel-deck structural system for two story roads has been adopted as a solution against traffic congestion in urban area, mainly because of fast construction, reduced self-weight, higher stiffness and efficient erection compared to that of concrete decks. The main objective is to study on the unit-elective optimal type and proportioning of a rational steel-deck system for two story roads using an optimum design program specifically developed for steel-deck systems. The objective function for the optimization is formulated as a minimum cost design problem. The behavior and design constraints are formulated based on the ASD(Allowable Stress Design) criteria of the Korean Bridge Design Code. The optimum design program developed in this study consists of two steps - the first step for the optimization of the steel box or plate girder viaducts, and the second step for the optimum design of the steel-decks with closed or open ribs. A grid model is used as a structural analysis model for the optimization of the main girder system, while the analysis of the deck system is based on the Pelican-Esslinger method. The SQP(Sequential Quadratic Programming) is used as the optimization technique for the constrained optimization problem. By using a set of application examples, the rational type related to the optimized steel-deck system designs is investigated by comparing the cost effectiveness of each type. Based on the results of the investigation it may be concluded that the optimal linear box girder and deck system with closed ribs may be utilized as one of the most rational and economical viaducts in the construction of two-story roads.

  • PDF

The Suggestion of Seismic Performance Values on Connections for Performance Based Design of Steel Structures (강구조 성능기반설계를 위한 접합부의 내진성능평가치 제안)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Lee, Jin-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • The purpose of this research was to analyze the connections of the seismic-performance values for domestic-performance-based designs. Basic research on the performance design method has been increasing of late, along with performance-based organization investigations. These investigations concern the performance level state of steel structure buildings. According to the performance limit state, seismic-performance values should be presented as appropriate steel structure engineering amounts. The first step, based on the full-scale steel structure experiments, involves researching on the making of a basic document. The moment-rotation angle relationship results of the experiment on the moment-frame connection were used to assort the functional and undamaged limits, which were assumed to be less than the yield moment. Moreover, the repairable and safety limits, which were assumed to exist between the yield and maximum moments, were assorted by investigating the accumulated plastic deformation ratio.

Information Delivery Requirements of Steel Structure according the Structural Design Stages using IDM (IDM을 이용한 강구조의 구조설계 단계별 정보전달 요구 분석)

  • Lee, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1467-1473
    • /
    • 2013
  • In construction project, it is important to exchange and share the digital information generated by their own professional softwares. So this paper analyzed the information delivery requirements of steel structure according the structural design stages using IDM methodology. For schematic design stage and detailed design stage, the structural design information to share in each design stages is abstracted by defining the PM, ER, and FP. The new ERs and FPs are proposed by defining the new property sets(Psets), suchlike bolt gauge line, weld, scallop, and cope, to complement the structural design information of $IFC2{\times}3$. Finally, the reasonability of the proposed new ERs, FPs are verified by applying them to represent the standard steel connection sample in detailed design stage. As a result, the structural design information of standard steel connection could be stored and managed sufficiently by using the proposed new ERs and FPs.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Direct Inelastic Design for Steel Structures (강구조를 위한 직접비탄성설계법)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.181-190
    • /
    • 2004
  • A new inelastic design method performing iterative calculations using secant stiffness was developed. Since the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the members by performing iterative calculation. In the present study, the procedure of the proposed design method was established. Design examples using the proposed method were presented, and its advantages were highlighted by comparisons with existing design methods using elastic or plastic analysis. Unlike the existing inelastic design methods performing the preliminary design on the structure and checking its validity using nonlinear analysis, the proposed integrated analysis-design method can directly calculate the strength and ductility demands of each member. In addition, the proposed design method can address the inelastic design strategy intended by the engineer, such as strength and ductility limits of members and the design concept of strong-column and weak-beam. As a result, economical and safe design can be achieved.

A Research Direction of Structural Fire Resistance Design of Steel Structures for Recommendation of PBD in Korea (국내 PBD 기반 설계를 위한 강구조 구조내화설계 구축방향에 관한 연구(II))

  • Kwon, Young-Jin;Kim, Dong-Eun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.264-269
    • /
    • 2009
  • 최근 초고층구조물 및 대공간구조물등에 대한 소방법의 성능설계등이 법제화되어 시행될 예정으로 있으나 화재성상예측등에 대한 기초적인 연구등이 매우 부족한 실정이며 이에따라 성능설계를 실시하기 위한 기반여건이 매우 취약한 조건이다. 특히 강구조건축물의 경우 초고층구조물의 전형적인 구조형식으로서 성능설계에 대한 연구기반이 조속히 필요한 실정이다. 따라서 본고는 전보에 이어 화재하중등과 밀접한 관련이 있는 가연물조사등과 더불어 이에 대한 이웃 일본건축학회의 강구조건축에 대한 성능적 내화설계방법론중 하중편을 조사하여 향후 국내의 화재하중선정을 위한 기초자료로 사용될수 있도록 하였다.

  • PDF

강.콘크리트 합성바닥판 일본 합성구조물 설계의 소개

  • 문태경
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 1997
  • 현재 일본의 합성구조물의 설계에 관한 기준서는 토목학회 '강구조물의 극한강도와 설계'와 철도종합기술연구소의 '철도구조물등설계표준.동해설(강.합성구조물)'이 있다. 그리고, 토목학회.강구조위원회.강구조 극한강도 연구 소위원회에서 합성구조물의 극한강도 분과회를 조직해서, 한계상태설계법의 포멧에 따라 합성구조물의 설계지침서를 금년 여름경에 출판 할 예정이다. 본인도 합성구조물의 극한강도 분과회의 위원으로 약 3년간동안 많은 공부와 연구를 행할 수 있는 기회를 받았다. 합성구조물의 설계지침서는 합성바닥판, 합성거더와 합성기둥으로 나누어져있으며, 이번에 소개한 부분은 그중 일부분인 합성바닥판의 강판과 철근콘크리트를 적당한 전단연결재로 결합한 합성바닥판의 설계부분이다.

  • PDF