• Title/Summary/Keyword: 감정 음성

Search Result 230, Processing Time 0.022 seconds

Emotion Recognition using Speech Recognition Information (음성 인식 정보를 사용한 감정 인식)

  • Kim, Won-Gu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

Emotional Speech Synthesis using the Emotion Editor Program (감정 편집기를 이용한 감정 음성 합성)

  • Chun Heejin;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.79-82
    • /
    • 2000
  • 감정 표현 음성을 합성하기 위하여 본 연구에서는 감정 음성 데이터의 피치와 지속시간의 음절 유형별 및 어절 내 음절 위치에 따른 변화를 분석하였고, 스펙트럼 포락이 감정 변화에 어떤 영향을 미치는지를 분석하였다. 그 결과, 피치와 지속시간의 음절 유형별, 어절 내 음절 위치에 따른 변화와, 스펙트럼 포락 등도 감정 변화에 영향을 미치는 것으로 나타났다. 또한, 감정 음성의 음향학적 분석 결과를 적용하여 감정 음성을 합성하고 평가하기 위하여, 평상 음성의 음운 및 운율 파라미터 (피치, 에너지, 지속시간, 스펙트럼 포락)를 조절함으로써 감정 음성을 생성하는 감정 편집기를 구현하였다.

  • PDF

A Study on the Acoustic Modeling of the Emotional Speech (감정 음성의 음향학적 모델링에 관한 연구)

  • 천희진;이양희
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.815-818
    • /
    • 2000
  • 본 논문에서는 감정 표현 음성 합성 시스템을 구현하기 위해서, 감정 음성 데이터베이스의 음향학적 특징인 피치, 에너지, 지속시간, 스펙트럼 포락에 대해 분석한 결과와 문법적 요소인 품사에 따른 감정 음성 데이터의 피치 변화를 분석하였다. 분석 결과, 기본 주파수, 에너지, 지속시간, 스펙트럼 포락은 감정 표현에 중요한 영향을 미치는 것으로 나타났으며, 전반적으로 화남과 기쁨의 감정이 평상과 슬픔의 감정 보다 피치 및 에너지의 변화가 크게 나타났으며, 특히 기쁜 감정의 경우 부사, 관형사, 연결어미, 조사, 접미사에서 피치 변화가 많았으며, 화난 감정의 경우, 관형사, 명사, 용언, 접미사에서 피치 변화가 높게 나타났다. 이러한 분석 결과를 적용해 감정 음성을 합성하기 위하여, 평상 음성에 각 감정 음성의 운율 요소를 적용하여 감정 음성을 합성하여 평가한 결과, 기쁜 감정은 기본 주파수의 변화에 의해 86.7%, 화난 감정은 에너지의 변화에 의해 91%, 슬픈 감정은 음절지속시간의 변화에 의해 76.7%가 각각 올바른 감정으로 인지되었다.

  • PDF

Emotion Recognition using Robust Speech Recognition System (강인한 음성 인식 시스템을 사용한 감정 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.586-591
    • /
    • 2008
  • This paper studied the emotion recognition system combined with robust speech recognition system in order to improve the performance of emotion recognition system. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. Final emotion recognition is processed using the input utterance and its emotional model according to the result of speech recognition. In the experiment, robust speech recognition system is HMM based speaker independent word recognizer using RASTA mel-cepstral coefficient and its derivatives and cepstral mean subtraction(CMS) as a signal bias removal. Experimental results showed that emotion recognizer combined with speech recognition system showed better performance than emotion recognizer alone.

An Analysis on the Emotional Speech for the Speech Synthesis System with Emotion (감정표현 음성합성 시스템을 위한 감정 분석)

  • 천희진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.350-355
    • /
    • 1998
  • 감정을 표현하는 음성 합성 시스템을 구현하기 위해서는 감정음성에 대한 분석이 필요하다. 본 논문에선,s 평상, 화남, 기쁨, 슬픔의 네 가지 감정에 대한 음성 데이터에 대해 음절 세그먼트, 라벨링을 행한 감정 음성 데이터베이스를 구축하였고, 감정표현이 음성에 영향을 미치는 요인에대하여, 운율, 음운적인 요소로 나누어 분석하였다. 또한 기본 주파수, 에너지, 음절지속시간에 대한 분석과 감정 음성의기본 주파수, 에너지, 음절지속시간, 스펙트럼 포락의 인지 정도를 측정하기 위하여 평상 음성에 감정 음성의 운율 요소를 적용하는 음성을 합성하여 ABX 방법으로 평가하였다. 그 결과, 기본 주파수의변화가 73.3%, 음절지속시간은 43.3% 로 올바른 감정으로 인지되었으며, 특히 슬픈 감정에서 음절지속시간은 76.6%가 올바르게 감정을 나타내는 것으로 인지되었다.

  • PDF

An Emotion Recognition Technique Using Speech Signals (음성신호를 이용한 감정인식)

  • Jeong, Byeong-Uk;Cheon, Seong-Pyo;Kim, Yeon-Tae;Kim, Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.123-126
    • /
    • 2007
  • 본 논문은 음성신호를 이용한 감정인식에 관한 연구이다. 감정인식에 관한 연구는 휴먼 인터페이스(Human Interface) 기술의 발전에서 인간과 기계의 상호작용을 위한 것이다. 본 연구에서는 음성신호를 이용하여 감정을 분석하고자 한다. 음성신호의 감정인식을 위해서 음성신호의 특정을 추출하여야한다. 본 논문에서는 개인에 따른 음성신호의 감정인식을 하고자하였다. 그래서 화자인식에 많이 사용되는 음성신호 분석기법인 Perceptual Linear Prediction(PLP) 분석을 이용하여 음성신호의 특정을 추출하였다. 본 연구에서는 PLP 분석을 통하여 개인화된 감정 패턴을 생성하여 간단하면서도 실시간으로 음성신호로부터 감정을 평가 할 수 있는 알고리즘을 만들었다.

  • PDF

Emotional Text-to-Speech System for Artificial Life Systems (인공생명체의 감정표현을 위한 음성처리)

  • 장국현;한동주;이상훈;서일홍
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2252-2255
    • /
    • 2003
  • 인간과 인공생명체(Artificial Life Systems)가 서로 커뮤니케이션을 진행하기 위하여 인공생명체는 자신이 의도한 바를 음성, 표정, 행동 등 다양한 방식을 통하여 표현할 수 있어야 한다. 특히 자신의 좋아함과 싫음 등 자율적인 감정을 표현할 수 있는 것은 인공생명체가 더욱 지능적이고 실제 생명체의 특성을 가지게 되는 중요한 전제조건이기도 하다. 위에서 언급한 인공생명체의 감정표현 특성을 구현하기 위하여 본 논문에서는 음성 속에 감정을 포함시키는 방법을 제안한다. 먼저 인간의 감정표현 음성데이터를 실제로 구축하고 이러한 음성데이터에서 감정을 표현하는데 사용되는 에너지, 지속시간, 피치(pitch) 등 특징을 추출한 후, 일반적인 음성에 위 과정에서 추출한 감정표현 특징을 적용하였으며 부가적인 주파수대역 필터링을 통해 기쁨, 슬픔, 화남, 두려움, 혐오, 놀람 등 6가지 감정을 표현할 수 있게 하였다. 감정표현을 위한 음성처리 알고리즘은 현재 음성합성에서 가장 널리 사용되고 있는 TD-PSOLA[1] 방법을 사용하였다.

  • PDF

Fuzzy Model for Speech Emotion Recognition (음성으로부터의 감정 인식을 위한 퍼지모델 제안)

  • Moon, Byung-Hyun;Jang, In-Hoon;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.115-118
    • /
    • 2008
  • 본 논문에서는 음성으로부터 감정을 인식하고 감성적인 운율로 음성 출력을 산출해 내는 시스템을 제안 한다. 음성적인 운율로부터 감정을 인식하기 위해서 퍼지룰(rule)을 이용한다. 본 논문에서 감정 인식 시스템은 음성 샘플들로 학습 데이터를 구축하고 이를 기반으로 하여 추출된 20개의 특징 집합으로부터 가장 중요한 특징들을 자동적으로 선택한다. 화남, 놀람, 행복, 슬픔, 보통의 5가지 감정 상태를 구분하기 위하여 접근법에 기반한 퍼지를 이용하였다.

  • PDF

Comparison and Analysis of Speech Signals for Emotion Recognition (감정 인식을 위한 음성신호 비교 분석)

  • Cho Dong-Uk;Kim Bong-Hyun;Lee Se-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.533-536
    • /
    • 2006
  • 본 논문에서는 음성 신호로부터 감정의 특징을 나타내는 요소를 찾아내는 것을 목표로 하고 있다. 일반적으로 감정을 인식할 수 있는 요소는 단어, 톤, 음성신호의 피치, 포만트, 그리고 발음 속도 및 음질 등이 있다. 음성을 기반으로 감정을 익히는 방법 중에서 현재 가장 많이 접근하고 있는 방법은 피치에 의한 방법이 있다. 사람의 경우는 주파수 같은 분석 요소보다는 톤과 단어, 빠르기, 음질로 감정을 받아들이게 되는 것이 자연스러운 방법이므로 이러한 요소들이 감정을 분류하는데 중요한 요소로 쓰일 수 있다. 따라서, 본 논문에서는 감정에 따른 음성의 특징을 추출하기 위해 사람의 감정 중에서 비교적 자주 쓰이는 평상, 기쁨, 화남, 슬픔에 관련된 4가지 감정을 비교 분석하였으며, 인간의 감정에 대한 음성의 특성을 분석한 결과, 강도와 스펙트럼에서 각각의 일관된 결과를 추출할 수 있었고, 이러한 결과에 대한 실험 과정과 최종 결과 및 근거를 제시하였다. 끝으로 실험에 의해 제안한 방법의 유용성을 입증하고자 한다.

  • PDF

Robust Speech Recognition using Vocal Tract Normalization for Emotional Variation (성도 정규화를 이용한 감정 변화에 강인한 음성 인식)

  • Kim, Weon-Goo;Bang, Hyun-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.773-778
    • /
    • 2009
  • This paper studied the training methods less affected by the emotional variation for the development of the robust speech recognition system. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions. The performance of the speech recognition system trained by using the speech signal containing no emotion is deteriorated if the test speech signal contains the emotions because of the emotional difference between the test and training data. In this study, it is observed that vocal tract length of the speaker is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, vocal tract normalization method is used to develop the robust speech recognition system for emotional variations. Experimental results from the isolated word recognition using HMM showed that the vocal tract normalization method reduced the error rate of the conventional recognition system by 41.9% when emotional test data was used.