Efforts to identify user's recognition which exists in the big data are being conducted actively. They try to measure scores of people's view about products, movies and social issues by analyzing statements raised on Internet bulletin boards or SNS. So this study deals with the problem of determining how to find the emotional vocabulary and the degree of these values. The survey methods are using the results of previous studies for the basic emotional vocabulary and degree, and inferring from the dictionary's glosses for the extended emotional vocabulary. The results were found to have the 4 emotional words lists (vocabularies) as basic emotional list, extended 1 stratum 1 level list from basic vocabulary's glosses, extended 2 stratum 1 level list from glosses of non-emotional words, and extended 2 stratum 2 level list from glosses' glosses. And we obtained the emotional degrees by applying the weight of the sentences and the emphasis multiplier values on the basis of basic emotional list. Experimental results have been identified as AND and OR sentence having a weight of average degree of included words. And MULTIPLY sentence having 1.2 to 1.5 weight depending on the type of adverb. It is also assumed that NOT sentence having a certain degree by reducing and reversing the original word's emotional degree. It is also considered that emphasis multiplier values have 2 for 1 stratum and 3 for 2 stratum.
Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.379-383
/
2021
감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.
Proceedings of the Korean Society for Information Management Conference
/
2001.08a
/
pp.29-34
/
2001
영상자료 및 소리자료의 색인과 검색을 위해서는 감정동사 및 감정형용사 등의 감정 어휘를 필요로 한다. 그러나 감정어휘는 그 뉘앙스가 미묘하여 분명한 분류체계가 없이는 체계적인 정리가 불가능하다. 이에 따라 본 연구에서는 국어학과 분류사전의 분류체계를 고찰하고 새로운 감정어휘의 분류방안을 연구하였으며, 감정에 따른 기쁨, 슬픔, 놀람, 공포, 혐오, 분노의 6가지 기본유형을 제시하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.3
/
pp.1422-1427
/
2013
This paper proposed a movie retrieval system based on sentimental keywords extracted from user's movie reviews. At first, sentimental keyword dictionary is manually constructed by applying morphological analysis to user's movie reviews, and then keyword weights in the dictionary are calculated for each movie with TF-IDF. By using these results, the proposed system classify sentimental categories of movies and rank classified movies. Without reading any movie reviews, users can retrieve movies through queries composed by sentimental keywords.
신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.
In cyberspace based on internet, users constitute communities and interact one another. Avatar means not only the other self but also the 'another being' that describes oneself in the cyberspace. If user's avatar shows expressive faces and behaves according to his thinking and emotion, he will have a feel of reality much more in the cyberspace. If avatar's countenances can be animated by just typing characters in avatar-based chat communication, the user is able to express his emotions more effectively. In this study, emotion-expressing vocabulary is analyzed and classified. Emotion-expressing vocabulary is essential to develop self-reactive avatar system in which avatar's countenances are automatically converted according to the words typed by users at chat. The results are as follows; First, emotion-expressing vocabulary selected out of Korean adjectives and intransitive verbs is made up of 209 words and is classified into 25 groups. Second, there are only 2 groups out of the 25 groups for positive expressions and others are for negative expressions. Therefore, negative expressions are more abundant than positive expressions in Korean vocabulary. Third, avatar's countenances are modelled according to the 25 groups by using the Quantification Method 3. The result shows that the emotion-expressing vocabulary has dose relations with avatar's countenances and is useful to communicate users' emotions. However, this study has some limits, in that Korean linguistical structure - the whole meaning of context - cannot be interpreted quantitatively.
Emotional expressions are expressions that show the internal condition of mind or consciousness. Types of emotional expressions include vocabulary that describes emotion, the composition of sentences that expresses emotion such as an exclamatory sentence and rhetorical question, expressions of interjection, appellation, causative, passive, adverbs of attitude for an idea, and a style of writing. This study focuses on vocabulary that describes emotion and analyzes the aspect of translation when emotional expressions of 'Hu(怖)' is shown on "Kokoro". The aspect of translation was analyzed by three categories as follows; a part of speech, handling of subjects, and classification of meanings. As a result, the aspect of translation for expressions of Hu(怖)' showed that they were translated to vocabulary as they were suggested in the dictionary in some cases. However, they were not always translated as they were suggested in the dictionary. Vocabulary that described the emotion of 'Hu(怖)' in Japanese sentences were mostly translated to their corresponding parts of speech in Korean. Some adverbs needed to add 'verbs' when they were translated. Also, different vocabulary was added or used to maximize emotion. However, the correspondence of a part of speech in English was different from Korean. Examples of Japanese sentences that expressed 'Hu(怖)' by verbs were translated to expression of participles for passive verbs such as 'fear', 'dread', 'worry', and 'terrify' in many cases. Also, idioms were translated with focus on the function of sentences rather than the form of sentences. Examples, what was expressed in adverbs did not accompany verbs of 'Hu (怖)'. Instead, it was translated to the expression of participles for passive verbs and adjectives such as 'dread', 'worry', and 'terrify' in many cases. The main agents of emotion were shown in the first person and the third person in simple sentences. The translation on emotional expressions when a main agent was the first person showed that the fundamental word order of Japanese was translated as it was in Korean. However, adverbs of time and adverbs of degree tended to be added. Also, the first person as the main agent of emotion was positioned at the place of subject when it was translated in English. However, things or the cause of events were positioned at the place of subject in some cases to show the degree of 'Hu(怖)' which the main agent experienced. The expression of conjecture and supposition or a certain visual and auditory basis was added to translate the expression of emotion when the main agent of emotion was the third person. Simple sentences without a main agent of emotion showed that their subjects could be omitted even if they were essential components because they could be known through context in Korean. These omitted subjects were found and translated in English. Those subjects were not necessarily humans who were the main agents of emotion. They could be things or causes of events that specified the expression of emotion.
Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.348-352
/
2002
본 연구는 18개의 감정어휘와 25쌍의 감성어휘를 사용하여 부산71역 거주 남녀 970명을 대상으로 현대패션에 대한 감정과 감성을 평가하여 구성요인과 의미의 차원을 밝히고, 감정경험과 감성과의 관계를 의복디자인의 조형적 특성으로 분석한 것이다. 본 연구 결과는 구매행동과 구매욕구에 실질적으로 영향을 미치는 감정경험에 대한 실증적 자료로서 의의가 있으며 디자인 기획시 그 활용도를 기대해 볼 수 있을 것이다.
Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.