• 제목/요약/키워드: 감정 마이닝

검색결과 85건 처리시간 0.021초

소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안 (Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media)

  • 오세종;김치호
    • 만화애니메이션 연구
    • /
    • 통권44호
    • /
    • pp.285-306
    • /
    • 2016
  • 1인 스마트폰 사용으로 웹툰, 웹소설, TV드라마는 생산자에서 소비자에게 직접적으로 소비할 수 있는 Direct-to-Consumer로 전환되고 있다. 특히, 포털사이트의 웹드라마는 새로운 미디어로 급성장하고 있다. '연애세포', '0시의 그녀', '최고의 미래', '우리 옆집에 EXO가 산다' 등을 TV드라마의 시청률처럼 조회수, 유입자, 댓글, 좋아요 등으로 다양한 반응을 분석할 수 있다. 분석 방법은 소셜미디어 빅데이터의 텍스트 마이닝 기법과 오피니언 마이닝 기법으로 작품을 분석했다. 즉, 웹드라마 마다의 특정 키워드를 추출하고, 추출한 키워드의 긍정, 부정, 중립 등 시청자의 감정을 예측할 수도 있다. 주요 인기 웹드라마를 분석한 결과로는 이미 팬을 확보한 K-Pop 아이돌 멤버의 출현과 포털사이트의 편성 회사와의 연관성이 재생수, 유입자, 댓글, 좋아요에 큰 영향을 미치는 것으로 나타났다. 또한 TV 이외의 매체로 '모바일 TV'의 영향력을 증명하였다. 한계점으로는 모바일 특화 콘텐츠 확보와 비즈니스 모델을 정립하는 것이 필요하겠다. 이 부분을 해결한다면, 한국은 웹드라마의 콘텐츠 강국이라는 긍정적 이미지를 보여줄 수 있는 계기가 될 것이다.

비정형 문서에서 감정과 상황 정보를 이용한 감성 예측 (Sentiment Prediction using Emotion and Context Information in Unstructured Documents)

  • 김진수
    • 융합정보논문지
    • /
    • 제10권10호
    • /
    • pp.40-46
    • /
    • 2020
  • 인터넷의 발전으로 사용자들은 자신의 경험이나 의견을 공유한다. 영화평과 같은 비정형 문서의 전체적인 감정이나 장르 등의 정보를 고려하지 않고 연관된 키워드를 사용하기 때문에 적절한 감정 상황에 따른 감성 정확도를 저해한다. 따라서 사용자들이 작성한 비정형 문서가 속한 장르나 전반적인 감정 등의 정보를 기반으로 감성을 예측하는 시스템을 제안한다. 먼저, 비정형 문서로부터 기쁨, 화남, 공포, 슬픔 등의 감정 집합과 연관된 대표 키워드를 추출하고, 감정 특징단어들의 정규화된 가중치와 비정형 문서의 정보를 훈련 집합으로 CNN과 LSTM을 조합한 시스템에 훈련한다. 최종적으로 영화 정보와 형태소 분석기와 n-gram을 통해 추출한 정제된 단어들과 이모티콘, 이모지 등을 테스트함으로써 감정을 이용한 감성 예측 정확도와 F-measure 측면에서 향상됨을 보였다. 제안한 예측시스템은 슬픈 영화에서 슬픈 단어의 사용과 공포 영화에서 무서운 단어 등의 사용으로 인해 부정으로 판단하는 오류를 피함으로써, 감성을 상황에 따라 적절하게 예측할 수 있다.

빅데이터 분석을 이용한 문단 내의 감정 예측 (Emotion Prediction of Paragraph using Big Data Analysis)

  • 김진수
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.267-273
    • /
    • 2016
  • 모바일의 확산과 더불어 정형화된 자료뿐만 아니라 다양한 형태의 비정형화된 자료로부터 정보가 생성되고 정보 전달 및 공유가 활발히 이루어지고 있다. 최근에는 다양한 SNS 매체들로부터 생산 및 배포되는 많은 자료들 중에서 유의미한 정보를 추출하는 기술로 빅데이터 기술을 많이 사용하며, 빅데이터 분석 기법 중 하나인 데이터 마이닝 기법을 사용한다. 특히, SNS로부터 수집된 방대하고 다양한 자료들을 이용하여 대중의 집단지성에 표출된 일반적인 감정을 분석하여 다양한 분야에 활용한다. 본 논문에서는 SNS를 통해 작성된 짧은 문단 내 함축된 키워드와 키워드들 간의 연관성을 이용하여 문단에 나타난 감정을 예측하고 사용자별 감정에 따른 적절한 답변이나 예측된 감정과 유사한 상품이나 영화 등 다양한 추천시스템에 사용될 수 있도록 형태소 분석과 변형된 n-gram방법을 혼합하여 효율적인 감정 예측 시스템을 제안한다. 제안된 시스템은 평균 82.25%의 재현율을 보여 기존의 시스템에 비해 더욱 향상된 성능을 보여 주었고, 형태소분석을 통해 의미 있는 키워드 추출에 도움이 될 것으로 기대한다.

Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션 (Quantified Lockscreen: Integration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self)

  • 김성실;박준수;우운택
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1459-1466
    • /
    • 2015
  • 잠금화면은 현대인들이 모바일 플랫폼에서 가장 자주 대면하는 인터페이스 중 하나이다. 조사에 따르면 스마트폰 사용자들은 일일 평균 150번 잠금해제를 수행하지만[1], 패턴인식, 비밀번호와 같은 잠금화면 인터페이스등은 보안 및 인증의 목적을 제외하곤 별 다른 이익을 제공하지 못하는 것이 현 실정이다. 본 논문에서는 보안용도의 기존 잠금화면을 전방 카메라를 활용한 얼굴 및 표정인식 어플리케이션으로 대체하여 표정 데이터를 수집한 뒤 실시간 표정 및 감정 변화 피드백을 제공하는 인터페이스를 제시한다. 본 연구에선 Quantified Lockscreen 어플리케이션을 통한 실험을 통해 1) 잠금화면을 활용한 비침습적인 인터페이스를 통해 연속적인 표정데이터 획득과 감정패턴을 분석할 수 있는 것을 검증했으며 2) 개인화된 학습 및 분석으로 표정인식 및 감정 검출의 정확도를 개선하였으며 3) 표정으로부터 추론된 감정 데이터의 타당성을 강화하기 위한 양괄식 검증기법을 도입하여 감정 검출의 다중채널 및 다중입력 방법론의 가능성을 확인하였다.

오피니언 마이닝을 통한 학습자 상태 분류 및 활동 모니터링 시스템 (Classifying learner's states and Monitoring it by using opinion Mining)

  • 김동현;장두수;최용석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.640-643
    • /
    • 2016
  • 오피니언 마이닝은 객관적인 정보를 필요로 하는 많은 분야에서 쓰이는 기법이다. 그러나 표현의 자유도가 높은 한글 Text를 분석하는 것은 상당히 어려운 일이다. 또한 한글 파괴 현상도 하나의 원인으로 대두되고 있다. 본 논문에서는 Text를 음소단위로 분할하는 Trigrarn-Signature 기법과 구문태그 패턴 기법을 통합한 새로운 상태 분류 기법을 제안했고, 만족, 불만, 낙담, 의문, 흥분 5가지 감정 분류를 시도했다. 이를 토대로 사용자의 정보를 그래프로 보여주는 시각화 시스템을 제안한다.

레스토랑의 온라인 리뷰를 통해 감성과 감정이 리뷰 유용성에 미치는 영향에 관한 연구 (A Study on the Influence of Sentiment and Emotion on Review Helpfulness through Online Reviews of Restaurants)

  • 야오즈옌;박지영;홍태호
    • 지식경영연구
    • /
    • 제22권1호
    • /
    • pp.243-267
    • /
    • 2021
  • 자극에 대한 변화의 과정을 통해 자신의 상태를 나타내는 감성과 어떤 현상에 대해 느끼는 단순한 심리상태를 나타내는 감정은 혼용되어 사용되는 경향이 있으나 그 의미와 쓰임새는 다르다. 본 연구에서는 온라인 소비자들이 다양한 제품과 서비스를 구매하고 사용한 후에 작성한 온라인 리뷰를 통해 감성과 감정을 구분하여 리뷰의 유용성에 어떠한 영향을 미치는지 알아보고자 한다. 최근 온라인 리뷰는 비즈니스 및 소비자에게 매우 중요한 요소로 자리매김하고 있다. 유용한 리뷰는 잠재 고객들의 의사결정 과정에서 핵심적인 역할을 하고 있으며 리뷰 유용성을 통해 평가될 수 있다. 리뷰 유용성은 소비자 개인의 구매 의사결정 문제뿐만 아니라 비즈니스에서 마케팅 전략에 활용됨으로써 실무적 중요성은 점차 커지고 있으며, 학문적으로도 리뷰 유용성의 영향요인을 찾는 연구의 중요성이 커지고 있다. 본 연구에서는 Yelp.com에서 레스토랑에 대한 리뷰를 확보하여 온라인 리뷰의 감성과 감정이 리뷰의 유용성에 어떠한 영향을 미치는지에 대한 연구를 진행하였다. 선행연구를 기반으로 온라인 리뷰에 대한 감성과 감정을 포함한 연구 모형을 구축하였으며, 텍스트 마이닝을 통해 온라인 리뷰의 감성과 감정이 온라인 리뷰의 유용성에 어떠한 영향을 미치는지 분석하고 감정에 대한 영향의 차이가 있는지를 검증하였다. 연구결과에서 부정적인 감성과 감정이 리뷰 유용성에 미치는 영향이 더 크며 이는 부정 편향성 이론과 일치하는 것으로 나타났다. 그리고 각각의 감정이 리뷰 유용성에 미치는 영향이 서로 차이가 있는 것으로 나타났다.

텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로 (Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2021
  • 전 세계적으로 퍼진 코로나 19 상황은 우리의 일상생활의 많은 부분에 영향을 끼쳤을 뿐만 아니라, 경제·사회 등 많은 부분에 걸쳐 막대한 영향력을 미치고 있다. 확진자와 사망자 수가 증가함에 따라 의료진과 대중은 불안, 우울, 스트레스 등 심리적인 문제를 겪고 있다고 한다. 장기적인 부정적인 감정은 사람들의 면역력을 감소시키고 신체적인 균형을 파괴할 수도 있으므로 코로나 19로 인한 심리적인 상태를 이해하는 것이 필수적인 상황이다. 본 연구에서는 코로나 19 감정과 관련된 뉴스 데이터를 수집하여, 텍스트 마이닝을 통해 키워드를 분류하고, 키워드 사이의 의미 네트워크 분석을 통해 단어들의 관계를 시각화하였다. 코로나 감정과 관련된 기사의 키워드에 나타난 단어들의 빈도수를 확인하고 이를 워드 클라우드로 분석하였다. 키워드 빈도 분석 결과 코로나 19 감정과 관련하여 '중국', '불안', '상황', '마음', '사회', '건강'과 같은 단어의 빈도가 높게 나타난 것을 확인할 수 있었다. 각 데이터 간 연결 중심성을 분석한 결과 키워드 중심성 네트워크에서 가장 중심적인 핵심어는 '심리'와 '코로나 19', '블루', '불안'이라는 단어가 높은 연결 중심성을 가지는 것을 확인할 수 있었다. 기사의 헤드라인에 나타난 주요 핵심어 사이의 동시 출현 빈도 네트워크를 그래프로 시각화한 결과, '코로나-블루' 쌍이 가장 굵게 표시되었고, '코로나-감정', '코로나-불안' 쌍이 비교적 굵은 선으로 표시된 것을 알 수 있었다. 코로나와 관련된 '블루'는 우울증을 의미하는 단어로, 코로나와 우울증은 이제 관심을 가져야 할 키워드임을 확인할 수 있었다. 본 연구에서는 장기화한 코로나 19 상황에서 신체적인 방역뿐만 아니라 심리적인 방역에도 힘써야 할 이 시기에 보건 정책담당자가 빠르고 복잡한 의사결정 과정에 도움이 되고자 미디어 뉴스를 모니터링 함으로써, 더욱더 쉬운 소셜 미디어 네트워크 분석 방법을 제시하고자 한다.

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.

오피니언 마이닝 알고리즘 기반 음성인식 인터뷰 모델의 설계 및 구현 (Design And Implementation of a Speech Recognition Interview Model based-on Opinion Mining Algorithm)

  • 김규호;김희민;이기영;임명재;김정래
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.225-230
    • /
    • 2012
  • 오피니언 마이닝은 기존의 데이터 마이닝 기술을 활용하여 웹 상에 개재된 블로그, 상품평등에 나타난 저자의 의견을 추출하는 분야로써 텍스트의 주제를 판단하는 것이 아닌 주제에 대한 저자의 태도를 판단하는 기술이다. 본 논문에서는 오피니언 마이닝 알고리즘과 공개된 음성인식 API을 사용하여 텍스트가 아닌 음성의 대한 데이터의 감정을 판단하기 위해 제안했다. 이 시스템은 공개된 Google Voice Recognition API와 주제어와 관련된 순위화 알고리즘, 개선된 극성 판단 알고리즘을 통하여 설계하고, 이를 바탕으로 음성인식 인터뷰 모델을 구현한다.

효과적인 애스팩트 마이닝을 위한 다중 레이블 분류접근법 (Multi-Label Classification Approach to Effective Aspect-Mining)

  • 원종윤;이건창
    • 경영정보학연구
    • /
    • 제22권3호
    • /
    • pp.81-97
    • /
    • 2020
  • 최근의 감성분류 연구는 출력변수가 하나인 단일레이블 분류방법을 사용한 연구가 많다. 특히, 이러한 연구는 하나의 극성 값(긍정, 부정)만을 찾는 연구가 많다. 그러나 한 문장 안에는 다중적인 의미가 내포되어 있다. 그 중에서도 감정과 오피니언이 이러한 특징을 갖는다. 본 논문은 두 가지 연구목적을 제시한다. 첫째, 한 문장 안에 다양한 토픽(주제 또는 애스팩트)이 있다는 사실을 기반으로, 해당 문장을 각 애스팩트 별로 감성을 분류하는 애스팩트 마이닝을 수행한다. 둘째, 두개 이상의 종속변수(출력 값)를 한 번에 분석하는 다중레이블 분류방법을 적용한다. 이에 본 연구는 감성분류의 연구가 단일분류기에 의해서만 이루어진 연구를 개선하고자 다중레이블 분류방법에 의한 애스팩트 마이닝을 수행하고자 한다. 이와 같은 연구목적을 달성하기 위해 국내 뮤지컬 데이터를 수집하였다. 분석결과 문장 안에 있는 다양한 애스팩트별 감성을 추출하였고, 유의한 결과를 얻었다.