인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.
최근 오디오 압축 기술의 발전에 힘입은 디지털 음원과 웹 스트리밍의 보급으로, 사용자가 음악 정보에 손쉽게 접할 수 있게 되었다. 이에 따라 음악을 보다 쉽고 효율적인 방법으로 검색하는 방법뿐 아니라 사용자의 환경에 따라 적절한 음악을 검색할 수 있는 기능의 필요성이 증가하게 되었다. 본 논문에서는 음악의 특징에 따라 분류된 데이터베이스를 사용하고, 사용자의 감정을 분석하여 적절한 음악을 검색하는 시스템을 제안한다. 본 시스템은 사용자의 감정 입력을 효율적으로 처리하기 위한 방법으로 Thayer의 2D emotional space를 적용하여 Valence-Arousal model의 두 가지의 입력을 처리한다. 가장 적합한 음악의 정보를 얻기 위해 사용된 Fuzzy Inference System의 IF-THEN 규칙을 정의하기 위하여 언어적으로 정의된 기존의 음악 감정 연구 결과를 적용하였고, 도출된 결과와 가장 유사도가 깊은 음악을 우선적으로 검색하도록 설계하였다. 이와 같이 구현된 시스템의 타당성을 검증하기 위해 사용자 설문조사를 수행하였다.
본 논문에서는 소셜 음악 사이트에서 사용자들이 생성한 태그를 바탕으로 음악을 추천하는 기법을 제안한다. 협력적 태깅 시스템은 사용자가 직접 선정한 단어를 콘텐츠에 부여할 수 있도록 하므로, 사용자의 선호도를 구체적으로 파악할 수 있는 정보를 제공한다. 특히, 감정을 표현하는 감정 태그들은 음악 장르나 음악가와 같이 사실을 나타내는 사실 태그들과는 다르게 선호도를 훨씬 직접 표현하고 있다. 따라서 태그의 의미를 파악하여 감정 태그와 사실 태그로 분류하고, 감정 태그는 감정표현의 정도에 따라 가중치를 부여하기 위해서 UniTag라고 하는 태그 온톨로지를 개발하였다. UniTag 온톨로지를 이용하여 정제된 태그 집합은 사용자 프로파일 생성에 사용되며, 태그 기반 사용자 프로파일을 바탕으로 음악 추천 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 전통적인 청취 횟수 기반 추천, 감정 태그 가중치를 고려하지 않은 추천, 그리고 감정 태그 가중치를 고려한 추천의 세 가지 추천 방법의 정확도와 재현율을 비교하였다. 실험 결과는, 감정 태그 가중치를 고려한 추천 방식이 정확도의 측면에서 다른 두 가지 방식보다 효율적이라는 것을 보여준다.
최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.
최근 음악 서비스 분야에는 감성추천 서비스가 시행되고 있다. 추천 시스템에 따라 내용 기반 추천 방식과 협업 기반 추천 방식으로 크게 구분할 수 있으며 대부분의 음악 서비스 분야에서는 많은 사용자들로부터 얻은 기호정보에 따라 사용자들의 관심사들을 자동적으로 예측하는 방법인 협업 기반 추천 방식으로 서비스를 운영하고 있다. 이에 따라 협업 기반 추천 방식을 사용하는 대표 음원 사이트 멜론과 벅스에서 음악 추천 서비스의 추천된 음악이 실제 감성과 맞는지 기쁨과 슬픔으로 분류하여 Russell의 감성 모형을 기준으로 가사의 5차 분류를 통해 곡의 감성을 분석하여 카테고리의 추천음악과 가사의 상관관계를 비교 연구하였다. 그 결과, 각 카테고리의 감성추천 음악과 실제 음악의 감성이 일치하는 부분도 있지만, 그 외 다양한 감정들이 도출되었다.
본 논문은 감정변화와 관련이 높다고 알려져 있는 생체정보인 뇌파(EEG), 심전도(ECG), 심박변이도(HRV)를 바탕으로 사용자의 감정상태를 추론하여 치유음악을 추천해주는 시스템을 제안한다. 사용자의 생체정보를 기반으로 사용자의 감정상태를 평온, 집중, 긴장, 우울의 4가지 단계로 분류하는 감성추론 시스템을 설계하고, 각각의 감정상태에 따라 적절한 카테고리의 음악을 추천함으로써 사용자의 스트레스 정도를 완화시키고자 한다.
최근 한국에서는 대부분의 사람들이 안드로이드 기반의 스마트폰을 사용하고 있고, 뮤직플레이어는 어느 스마트폰에서나 찾아볼 수 있다. 그러나 뮤직 플레이어들 중 사용자의 취향이나, 음악을 듣는 성향에 맞춰진 개인화된 애플리케이션은 찾아보기 힘든 실정이다. 본 논문에서는 음악을 분석하여 감정에 따라 자동으로 분류하고, 사용자가 입력한 감정에 따라 추천하며, 사용자의 선호도를 반영하는 기능을 제공할 뿐만 아니라, 음악을 색채를 통해 시각화함으로써 사용자가 음악을 보다 쉽게 느낄 수 있도록 구현된 감성 뮤직 플레이어를 제안한다. 이를 통해 사용자는 선곡의 어려움을 해소하고 자신에게 최적화된 애플리케이션을 사용할 수 있다.
음악에서는 다양한 감정의 표현을 시간에 따른 음악 무드의 전이로 표현한다. 본 연구에서는 Longest Common Subsequence (LCS) 알고리즘 및 k-Means 알고리즘에 기반한 유사 음악 검색 기법을 제안한다. 우선, 음악 무드의 흐름을 무드 세그먼트 단위로 나누고, 이를 추출된 다양한 음악 특성을 k-Means 알고리즘으로 분류하여 무드 시퀀스로 변환한다. 또한, 유사한 무드의 흐름을 가지는 음악을 검색하기 위해 LCS 알고리즘에 기반한 무드 시퀀스의 유사도를 정의한다. 본 논문은 제안된 내용을 바탕으로 실험과 설문 조사를 통해, 기존의 전역적 특성 검색 방식보다 시퀀스를 이용한 검색방식이 좀 더 효율적임을 증명하였다.
음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.
이 논문은 실시간으로 취득되는 뇌파를 기반으로 자동으로 음악을 추천하는 음악추천 기능의 시스템인 MyMusicShuffler 를 소개한다. 이 시스템은 뇌파 분석을 통한 사용자의 감성을 자동으로 분류하는 방식으로 멀티태스킹 환경에 익숙한 사용자들의 음악 청취를 위한 소모적인 상호작용을 없애는 새로운 방식의 인터페이스 환경을 실험하였다. 뇌파의 분석을 통하여 실시간으로 사용자의 감성 관련 반응을 반영하여 음악을 선택하여 제공하는 시스템이다. 이 논문은 개인의 감성적 반응에 의하여 상호작용하는 음악 추천 서비스인 MyMusicShuffler 시스템의 구현 내용을 설명할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.