• 제목/요약/키워드: 감정 기반 음악분류

검색결과 26건 처리시간 0.036초

Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 (Parting Lyrics Emotion Classification using Word2Vec and LSTM)

  • 임명진;박원호;신주현
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.90-97
    • /
    • 2020
  • 인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.

음악 무드와 감정의 퍼지 추론을 기반한 음악 검색 기법 (A Music Retrieval Scheme based on Fuzzy Inference on Musical Mood and Emotion)

  • 전상훈;노승민;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.51-53
    • /
    • 2008
  • 최근 오디오 압축 기술의 발전에 힘입은 디지털 음원과 웹 스트리밍의 보급으로, 사용자가 음악 정보에 손쉽게 접할 수 있게 되었다. 이에 따라 음악을 보다 쉽고 효율적인 방법으로 검색하는 방법뿐 아니라 사용자의 환경에 따라 적절한 음악을 검색할 수 있는 기능의 필요성이 증가하게 되었다. 본 논문에서는 음악의 특징에 따라 분류된 데이터베이스를 사용하고, 사용자의 감정을 분석하여 적절한 음악을 검색하는 시스템을 제안한다. 본 시스템은 사용자의 감정 입력을 효율적으로 처리하기 위한 방법으로 Thayer의 2D emotional space를 적용하여 Valence-Arousal model의 두 가지의 입력을 처리한다. 가장 적합한 음악의 정보를 얻기 위해 사용된 Fuzzy Inference System의 IF-THEN 규칙을 정의하기 위하여 언어적으로 정의된 기존의 음악 감정 연구 결과를 적용하였고, 도출된 결과와 가장 유사도가 깊은 음악을 우선적으로 검색하도록 설계하였다. 이와 같이 구현된 시스템의 타당성을 검증하기 위해 사용자 설문조사를 수행하였다.

UniTag 온톨로지를 이용한 태그 기반 음악 추천 기법 (A Tag-based Music Recommendation Using UniTag Ontology)

  • 김현희
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권11호
    • /
    • pp.133-140
    • /
    • 2012
  • 본 논문에서는 소셜 음악 사이트에서 사용자들이 생성한 태그를 바탕으로 음악을 추천하는 기법을 제안한다. 협력적 태깅 시스템은 사용자가 직접 선정한 단어를 콘텐츠에 부여할 수 있도록 하므로, 사용자의 선호도를 구체적으로 파악할 수 있는 정보를 제공한다. 특히, 감정을 표현하는 감정 태그들은 음악 장르나 음악가와 같이 사실을 나타내는 사실 태그들과는 다르게 선호도를 훨씬 직접 표현하고 있다. 따라서 태그의 의미를 파악하여 감정 태그와 사실 태그로 분류하고, 감정 태그는 감정표현의 정도에 따라 가중치를 부여하기 위해서 UniTag라고 하는 태그 온톨로지를 개발하였다. UniTag 온톨로지를 이용하여 정제된 태그 집합은 사용자 프로파일 생성에 사용되며, 태그 기반 사용자 프로파일을 바탕으로 음악 추천 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 전통적인 청취 횟수 기반 추천, 감정 태그 가중치를 고려하지 않은 추천, 그리고 감정 태그 가중치를 고려한 추천의 세 가지 추천 방법의 정확도와 재현율을 비교하였다. 실험 결과는, 감정 태그 가중치를 고려한 추천 방식이 정확도의 측면에서 다른 두 가지 방식보다 효율적이라는 것을 보여준다.

지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구 (Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System)

  • 박준형;박승민;이영환;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2011
  • 최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.

음악 콘텐츠의 감성추천 서비스 음악과 가사와의 상관관계에 관한 연구 (A Study on Correlation of the sensitivity of the content recommendation service music and lyrics)

  • 이승원;이승연
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2016
  • 최근 음악 서비스 분야에는 감성추천 서비스가 시행되고 있다. 추천 시스템에 따라 내용 기반 추천 방식과 협업 기반 추천 방식으로 크게 구분할 수 있으며 대부분의 음악 서비스 분야에서는 많은 사용자들로부터 얻은 기호정보에 따라 사용자들의 관심사들을 자동적으로 예측하는 방법인 협업 기반 추천 방식으로 서비스를 운영하고 있다. 이에 따라 협업 기반 추천 방식을 사용하는 대표 음원 사이트 멜론과 벅스에서 음악 추천 서비스의 추천된 음악이 실제 감성과 맞는지 기쁨과 슬픔으로 분류하여 Russell의 감성 모형을 기준으로 가사의 5차 분류를 통해 곡의 감성을 분석하여 카테고리의 추천음악과 가사의 상관관계를 비교 연구하였다. 그 결과, 각 카테고리의 감성추천 음악과 실제 음악의 감성이 일치하는 부분도 있지만, 그 외 다양한 감정들이 도출되었다.

  • PDF

생체 신호 특징 기반의 감정분석을 통한 음악 추천 시스템 (Music Recommendation System based on Feature Emotional Sensing)

  • 정유채;임보연;윤용익
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.1112-1114
    • /
    • 2017
  • 본 논문은 감정변화와 관련이 높다고 알려져 있는 생체정보인 뇌파(EEG), 심전도(ECG), 심박변이도(HRV)를 바탕으로 사용자의 감정상태를 추론하여 치유음악을 추천해주는 시스템을 제안한다. 사용자의 생체정보를 기반으로 사용자의 감정상태를 평온, 집중, 긴장, 우울의 4가지 단계로 분류하는 감성추론 시스템을 설계하고, 각각의 감정상태에 따라 적절한 카테고리의 음악을 추천함으로써 사용자의 스트레스 정도를 완화시키고자 한다.

맞춤형 감성 뮤직 플레이어를 위한 음악 분류 및 추천 기법 구현 (An Implementation of a Classification and Recommendation Method for a Music Player Using Customized Emotion)

  • 송유정;강수연;임선영;박영호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권4호
    • /
    • pp.195-200
    • /
    • 2015
  • 최근 한국에서는 대부분의 사람들이 안드로이드 기반의 스마트폰을 사용하고 있고, 뮤직플레이어는 어느 스마트폰에서나 찾아볼 수 있다. 그러나 뮤직 플레이어들 중 사용자의 취향이나, 음악을 듣는 성향에 맞춰진 개인화된 애플리케이션은 찾아보기 힘든 실정이다. 본 논문에서는 음악을 분석하여 감정에 따라 자동으로 분류하고, 사용자가 입력한 감정에 따라 추천하며, 사용자의 선호도를 반영하는 기능을 제공할 뿐만 아니라, 음악을 색채를 통해 시각화함으로써 사용자가 음악을 보다 쉽게 느낄 수 있도록 구현된 감성 뮤직 플레이어를 제안한다. 이를 통해 사용자는 선곡의 어려움을 해소하고 자신에게 최적화된 애플리케이션을 사용할 수 있다.

음악 무드의 변화 기반 유사 음악 검색 기법 (A Music Retrieval Scheme based on Variation of Musical Mood)

  • 전상훈;한병준;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.760-762
    • /
    • 2008
  • 음악에서는 다양한 감정의 표현을 시간에 따른 음악 무드의 전이로 표현한다. 본 연구에서는 Longest Common Subsequence (LCS) 알고리즘 및 k-Means 알고리즘에 기반한 유사 음악 검색 기법을 제안한다. 우선, 음악 무드의 흐름을 무드 세그먼트 단위로 나누고, 이를 추출된 다양한 음악 특성을 k-Means 알고리즘으로 분류하여 무드 시퀀스로 변환한다. 또한, 유사한 무드의 흐름을 가지는 음악을 검색하기 위해 LCS 알고리즘에 기반한 무드 시퀀스의 유사도를 정의한다. 본 논문은 제안된 내용을 바탕으로 실험과 설문 조사를 통해, 기존의 전역적 특성 검색 방식보다 시퀀스를 이용한 검색방식이 좀 더 효율적임을 증명하였다.

딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석 (Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon)

  • 윤경섭;오종민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

MyMusicShuffler: 뇌파의 실용적 활용을 통한 감정분석 기반 음악 추천 시스템에 관한 연구 (MyMusicShuffler: Mood-Based Music Recommendation with the Practical Usage of Brainwave Signals)

  • 신사임;장달원;이종설;장세진;김지환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1195-1198
    • /
    • 2014
  • 이 논문은 실시간으로 취득되는 뇌파를 기반으로 자동으로 음악을 추천하는 음악추천 기능의 시스템인 MyMusicShuffler 를 소개한다. 이 시스템은 뇌파 분석을 통한 사용자의 감성을 자동으로 분류하는 방식으로 멀티태스킹 환경에 익숙한 사용자들의 음악 청취를 위한 소모적인 상호작용을 없애는 새로운 방식의 인터페이스 환경을 실험하였다. 뇌파의 분석을 통하여 실시간으로 사용자의 감성 관련 반응을 반영하여 음악을 선택하여 제공하는 시스템이다. 이 논문은 개인의 감성적 반응에 의하여 상호작용하는 음악 추천 서비스인 MyMusicShuffler 시스템의 구현 내용을 설명할 것이다.