• 제목/요약/키워드: 감정자질

Search Result 53, Processing Time 0.022 seconds

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification (한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity (문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.491-497
    • /
    • 2009
  • This paper proposes a new feature weighting method for document sentiment classification. The proposed method considers the difference of sentiment intensities among sentences in a document. Sentiment features consist of sentiment vocabulary words and the sentiment intensity scores of them are estimated by the chi-square statistics. Sentiment intensity of each sentence can be measured by using the obtained chi-square statistics value of each sentiment feature. The calculated intensity values of each sentence are finally applied to the TF-IDF weighting method for whole features in the document. In this paper, we evaluate the proposed method using support vector machine. Our experimental results show that the proposed method performs about 2.0% better than the baseline which doesn't consider the sentiment intensity of a sentence.

Lyric-based Emotion Classification using Structured SVM (Structured SVM을 이용한 노래 가사의 감정 분류)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.273-275
    • /
    • 2012
  • 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 청자에 따라 느끼는 감정이 다르다. 따라서 전통적인 음악 분류에서 사용하는 템포, 박자, 음정, 음표, 리듬과 같은 자질을 이용하여 감정을 분류할 수 없다. 본 연구에서는 가사로부터 감정 자질을 추출하고, 이를 학습 자질로 이용하여 노래 가사의 감정을 분류한다. 감정 자질의 추출 정확도를 높이고자, 한국어의 언어적 특징을 반영한 규칙을 구축한다. 추출된 감정 자질과 structured SVM을 이용하여 노래 가사의 감정을 분류한 결과, Naive Bayes나 SVM과 같은 전통적인 학습 기법보다 높은 성능(accuracy = 68.9%)을 보였다.

Sentiment Classification Using Feature Reweighting (자질 가중치의 재조정을 통한 감정 분류)

  • Seo, Hyung-Won;Kim, Hyung-Chul;Kim, Jae-Hoon;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.145-150
    • /
    • 2009
  • 이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.

  • PDF

Using Non-Lexical Features for Tweet Sentiment Classificaion (트윗 감정 분류를 위한 비어휘자질의 사용)

  • Hong, Cho-Hee;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.160-162
    • /
    • 2012
  • 문서를 대상으로 한 다양한 감정 분류 연구가 진행되어 왔으며, 최근에는 트윗 감정 분류에 그대로 적용되고 있다. 그러나 트윗은 일반 문서와 다르게 몇 가지의 독특한 특징을 갖고 있어 좋은 성능을 보이지 못하고 있다. 본 논문에서는 기계학습을 기반으로 트윗의 특징과 트윗 사용자 정보 자질을 사용한 실험으로 트윗 감정 분류 성능의 영향을 확인하였다. 실험 결과 트윗에 포함된 이모티콘 감정 극성과, 사용자 성향 극성 자질은 트윗 감정 분류 모델의 성능 향상에 기여를 하는 것을 알 수 있었다.

  • PDF

A Korean Document Sentiment Classification System based on Semantic Properties of Sentiment Words (감정 단어의 의미적 특성을 반영한 한국어 문서 감정분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper proposes how to improve performance of the Korean document sentiment-classification system using semantic properties of the sentiment words. A sentiment word means a word with sentiment, and sentiment features are defined by a set of the sentiment words which are important lexical resource for the sentiment classification. Sentiment feature represents different sentiment intensity in general field and in specific domain. In general field, we can estimate the sentiment intensity using a snippet from a search engine, while in specific domain, training data can be used for this estimation. When the sentiment intensity of the sentiment features are estimated, it is called semantic orientation and is used to estimate the sentiment intensity of the sentences in the text documents. After estimating sentiment intensity of the sentences, we apply that to the weights of sentiment features. In this paper, we evaluate our system in three different cases such as general, domain-specific, and general/domain-specific semantic orientation using support vector machine. Our experimental results show the improved performance in all cases, and, especially in general/domain-specific semantic orientation, our proposed method performs 3.1% better than a baseline system indexed by only content words.

Emotion Classification in Dialogues Using Embedding Features (임베딩 자질을 이용한 대화의 감정 분류)

  • Shin, Dong-Won;Lee, Yeon-Soo;Jang, Jung-Sun;Lim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF