• Title/Summary/Keyword: 감정자질추출

Search Result 21, Processing Time 0.032 seconds

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

Lyric-based Emotion Classification using Structured SVM (Structured SVM을 이용한 노래 가사의 감정 분류)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.273-275
    • /
    • 2012
  • 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 청자에 따라 느끼는 감정이 다르다. 따라서 전통적인 음악 분류에서 사용하는 템포, 박자, 음정, 음표, 리듬과 같은 자질을 이용하여 감정을 분류할 수 없다. 본 연구에서는 가사로부터 감정 자질을 추출하고, 이를 학습 자질로 이용하여 노래 가사의 감정을 분류한다. 감정 자질의 추출 정확도를 높이고자, 한국어의 언어적 특징을 반영한 규칙을 구축한다. 추출된 감정 자질과 structured SVM을 이용하여 노래 가사의 감정을 분류한 결과, Naive Bayes나 SVM과 같은 전통적인 학습 기법보다 높은 성능(accuracy = 68.9%)을 보였다.

Sentiment Classification Using Feature Reweighting (자질 가중치의 재조정을 통한 감정 분류)

  • Seo, Hyung-Won;Kim, Hyung-Chul;Kim, Jae-Hoon;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.145-150
    • /
    • 2009
  • 이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.

  • PDF

Emotion Classification in Song Lyrics using the Emotion Ontology (감정 온톨로지를 활용한 노래 가사의 감정 분류)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.340-343
    • /
    • 2011
  • 음악 감정 분류에 관한 기존의 연구들은 템포, 박자, 음정, 음표, 리듬 등과 같은 음악의 멜로디와 관련된 자질을 이용하여 음악 감정을 분류하였다. 그러나 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 가사의 내용에 따라 음악에 대하여 청자가 느끼는 감정이 크게 다르다. 본 논문에서는 감정 온톨로지를 활용하여 노래 가사를 감정에 따라 분류하는 방법에 대하여 제안한다. 기구축 된 감정 온톨로지를 바탕으로 네 가지 통사적 규칙을 적용하여 노래 가사로부터 감정 자질을 추출한다. 추출된 감정 자질을 이용하여 Naive Bayes, HMM, SVM과 같은 기계학습 기법을 이용하여 8개 감정 그룹에 대해 58.8%의 정확도를 보였다.

A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews (강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법)

  • Shin, Jun-Soo;Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.946-950
    • /
    • 2010
  • Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.

A method to sequentially use lexical features for effective sentiment categorization of Korean Customer Reviews (효과적인 상품평 감정 분류를 위한 어휘 자질의 순차적 사용 방법)

  • Shin, Jun-Soo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.151-154
    • /
    • 2009
  • 인터넷이 크게 발전하면서 현재는 인터넷으로 쉽게 쇼핑을 할 수 있다. 이 때 물건의 구입에 큰 영향력을 미치는 것이 바로 그 물건의 상품평이다. 하지만 실제로 수많은 상품평을 사용자가 일일이 확인하고 판단하는 데에는 많은 시간이 소모된다. 이러한 문제점을 해결하기 위해서 본 논문에서는 상품평 문장을 일반, 긍정, 부정의 세 단계로 나누는 시스템을 제안한다. 감정을 판단하는데 중요한 역할을 하는 품사에 따라 우선순위를 달리하여 자질을 추출한다. 추출된 자질을 사용하여 Paul Graham을 사용하여 가중치를 계산하고 기계학습을 한다. 실험은 일반과 감정(긍정, 부정)으로 분류하는 실험과 긍정과 부정으로 분류하는 실험을 하였다. 실험 결과 품사에 우선순위를 사용하여 만든 시스템이 기본 시스템보다 더 적은 자질을 사용하고 더 높은 성능을 보였다.

  • PDF

A Rating System on Movie Reviews using the Emotion Feature and Kernel Model (감정자질과 커널모델을 이용한 영화평 평점 예측 시스템)

  • Xu, Xiang-Lan;Jeong, Hyoung-Il;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.37-41
    • /
    • 2011
  • 본 논문에서는 최근 많은 관심을 받고 있는 Opinion Mining으로서 사용자들의 자연어 형태의 영화평 문장을 분석하여 자동으로 평점을 예측하는 시스템을 제안한다. 제안 시스템은 영화평 분석에 적합한 어휘 자질, 감정 자질, 가치 자질 및 기타 자질들을 추출하고, 10점 척도의 영화평의 평점을 10개의 범주로 가정하여, 커널모델인 다중 범주 Support Vector Machine (SVM) 모델을 이용하여 높은 성능으로 영화평의 평점을 범주 분류한다.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF