• Title/Summary/Keyword: 감정검출

Search Result 88, Processing Time 0.025 seconds

Quantified Lockscreen: Integration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self (Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션)

  • Kim, Sung Sil;Park, Junsoo;Woo, Woontack
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1459-1466
    • /
    • 2015
  • Lockscreen is one of the most frequently encountered interfaces by smartphone users. Although users perform unlocking actions every day, there are no benefits in using lockscreens apart from security and authentication purposes. In this paper, we replace the traditional lockscreen with an application that analyzes facial expressions in order to collect facial expression data and provide real-time feedback to users. To evaluate this concept, we have implemented Quantified Lockscreen application, supporting the following contributions of this paper: 1) an unobtrusive interface for collecting facial expression data and evaluating emotional patterns, 2) an improvement in accuracy of facial expression detection through a personalized machine learning process, and 3) an enhancement of the validity of emotion data through bidirectional, multi-channel and multi-input methodology.

Statistical Model for Emotional Video Shot Characterization (비디오 셧의 감정 관련 특징에 대한 통계적 모델링)

  • 박현재;강행봉
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1200-1208
    • /
    • 2003
  • Affective computing plays an important role in intelligent Human Computer Interactions(HCI). To detect emotional events, it is desirable to construct a computing model for extracting emotion related features from video. In this paper, we propose a statistical model based on the probabilistic distribution of low level features in video shots. The proposed method extracts low level features from video shots and then from a GMM(Gaussian Mixture Model) for them to detect emotional shots. As low level features, we use color, camera motion and sequence of shot lengths. The features can be modeled as a GMM by using EM(Expectation Maximization) algorithm and the relations between time and emotions are estimated by MLE(Maximum Likelihood Estimation). Finally, the two statistical models are combined together using Bayesian framework to detect emotional events in video.

Emotion Recognition using Pitch Parameters of Speech (음성의 피치 파라메터를 사용한 감정 인식)

  • Lee, Guehyun;Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.272-278
    • /
    • 2015
  • This paper studied various parameter extraction methods using pitch information of speech for the development of the emotion recognition system. For this purpose, pitch parameters were extracted from korean speech database containing various emotions using stochastical information and numerical analysis techniques. GMM based emotion recognition system were used to compare the performance of pitch parameters. Sequential feature selection method were used to select the parameters showing the best emotion recognition performance. Experimental results of recognizing four emotions showed 63.5% recognition rate using the combination of 15 parameters out of 56 pitch parameters. Experimental results of detecting the presence of emotion showed 80.3% recognition rate using the combination of 14 parameters.

LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI (BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화)

  • Aliyu, Ibrahim;Mahmood, Raja Majid;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1171-1180
    • /
    • 2019
  • Emotion is a psycho-physiological process that plays an important role in human interactions. Affective computing is centered on the development of human-aware artificial intelligence that can understand and regulate emotions. This field of study is also critical as mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction are associated with emotion. Despite the efforts in emotions recognition and emotion detection from nonstationary, detecting emotions from abnormal EEG signals requires sophisticated learning algorithms because they require a high level of abstraction. In this paper, we investigated LSTM hyperparameters for an optimal emotion EEG classification. Results of several experiments are hereby presented. From the results, optimal LSTM hyperparameter configuration was achieved.

Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition (감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계)

  • Og, Yu-Seon;Cho, Woo-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.613-617
    • /
    • 2021
  • According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.

  • PDF

A Survey of Plagiarism Inspection Method for Efficient Protecting of Intellectual Properties and Proposal of Art works Plagiarism Inspection (지적재산권의 효율적 보호를 위한 표절 감정 기법의 고찰 및 예술품의 위작 감정 방법의 제안)

  • 조동욱
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.72-78
    • /
    • 2003
  • In this paper, survey of technical methods for protecting intellectual properties and proposal of art works plagiarism detection are accomplished. For this, in this paper, a survey of technical methods for inspecting of program source code plagiarism, analysis of natural languages plagiarism types and existing inspection methods are accomplished Also, author verification system and plagiarism detection about ancient literatures or art works is proposed because of ancient literatures or art work are important in the aspect of cultural properties control, protecting of author's intellectual property and owner's property estimation.

  • PDF

Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm (L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발)

  • Choi, YongSoo
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Digital image forgery detection is one of very important fields in the field of digital forensics. As the forged images change naturally through the advancement of technology, it has made it difficult to detect forged images. In this paper, we use passive forgery detection for copy paste forgery in digital images. In addition, it detects copy-paste forgery using the L0 Norm-based LE operator, and compares the detection accuracy with the forgery detection using the existing L2, L1 Norm-based LE operator. In comparison of detection rates, the proposed lower triangular(Ayalneh and Choi) window was more robust to BAG mismatch detection than the conventional window filter. In addition, in the case of using the lower triangular window, the performance of image forgery detection was measured increasingly higher as the L2, L1 and L0 Norm LE operator was performed.

Algorithm for the Analysis of business district using Pedestrian-Detection (보행자검출을 통한 상권 분석 알고리즘)

  • Lee, Seung-Ik
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • In this paper, we propose an algorithm that provide services to consumers who want to conduct business by scientifically and systematically analyzing the number of pedestrians in a specific area over a specific period of time. In this paper, we proposed the algorithm to analyze the commercial area using the pedestrian-detect algorithm in the particular region using YOLO, one of the deep learning techniques. And with one image per minute in the images, the number of pedestrians is identified and this information is used for the analysis of business district on interesting area and time, systematically and objectively.

Analysis and Recognition of Depressive Emotion through NLP and Machine Learning (자연어처리와 기계학습을 통한 우울 감정 분석과 인식)

  • Kim, Kyuri;Moon, Jihyun;Oh, Uran
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.449-454
    • /
    • 2020
  • This paper proposes a machine learning-based emotion analysis system that detects a user's depression through their SNS posts. We first made a list of keywords related to depression in Korean, then used these to create a training data by crawling Twitter data - 1,297 positive and 1,032 negative tweets in total. Lastly, to identify the best machine learning model for text-based depression detection purposes, we compared RNN, LSTM, and GRU in terms of performance. Our experiment results verified that the GRU model had the accuracy of 92.2%, which is 2~4% higher than other models. We expect that the finding of this paper can be used to prevent depression by analyzing the users' SNS posts.