• 제목/요약/키워드: 감온 팽창밸브

Search Result 3, Processing Time 0.018 seconds

Development of simulation program for TXV and capillary tube performance analysis (감온 팽창밸브 및 모세관 성능 시뮬레이션 프로그램 개발)

  • 박봉수;한창섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.170-180
    • /
    • 2000
  • The equation which is related to TXV performance was investigated. On the basis of this equation, the TXV simulation program was developed. Results of the developed TXV simulation program were proven by the experiment on the influence of pressure difference between TXV entrance and exit and equalizing pressure. Simulation results show very good agreement with experimental results, the RMS error between them was 1.83%. The capillary tube simulation program was made by the basic equation of fluid dynamics. Results of this program were proven by data which were experimented previously. The RMS error between simulation results and experimental results was 4.13% .

  • PDF

A Study on the Dynamic Characteristics of Nitrogen Mixed Gas for Thermostatic Expansion Valve Sensing Blub (온도 감지식 팽창밸브 감온통 질소가스 혼합냉매의 동특성 연구)

  • Kim, Si-Young;Koo, Su-Jin;Ju, Chang-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • The pressure and temperature characteristics of mixed refrigerant gases in bulb for thermostatic expansion valve were studied using R22 refrigerant and $N_2$ gases. The characteristics of mixed refrigerant gases were investigated according to pressure variation and the variation of composition ratio of R22 refrigerant and $N_2$ gases in the temperature range of -$15^{\circ}C$~$15^{\circ}C$. The Maximum operating pressure(MOP) of mixed refrigerant gases were showed a tendency to decrease with decreasing the mixing ratio of $N_2$ gas. The characteristics in the case of the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were the same result as Reference refrigerant. In addition, the characteristics of the mixed refrigerant gases in the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were showed almost linear in the measurement range of pressure-temperature, and the physical properties also were showed similar results with Reference refrigerant. It was able to confirm that a MOP on the thermostatic expansion valve for sensing bulb can be maintained by adjusting the mixing ratio of R22 refrigerant and $N_2$ gases.

A Study on the Additives of mixed Gas charged in Thermostatic Bulb for Expansion Valve (팽창밸브 개폐용 감온통 혼합가스의 첨가제 연구)

  • Kim, Si-Young;Ju, Chang-Sik;Koo, Su-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.126-132
    • /
    • 2014
  • The P-T characteristics of mixed refrigerant in thermostatic expansion valve sensing bulb were studied using R-134a and R-410A refrigerant. The characteristics of mixed refrigerant were investigated according to pressure variation and the variation of composition ratio of R-134A and R-410A in the temperature range of $-15^{\circ}C{\sim}15^{\circ}C$. The Thermodynamic characteristic values of the mixed refrigerants were identified using the characteristic value analysis program of mixed refrigerant(Refrop v9.0, NIST). The P-T characteristics in the case of the mixing ratio of 90:10 for R-410A and R-134A were the same result as R-22. And the physical properties showed similar results with R-22. The Maximum operating pressure(MOP) of mixed refrigerant showed a tendency to decrease with decreasing the mixing ratio of additive gases($N_2$ or He) gases. The characteristics in the case of the mixing ratio of 80:1 for mixed refrigerant and additive gases were the similar result as Reference refrigerant.(R-22 MOP, Sporlan company) In addition $N_2$ and He, both showed the same results. It was able to confirm that a MOP on the thermostatic expansion valve sensing bulb can be maintained by adjusting the mixing ratio of mixed refrigerant gases and additive gases.