• Title/Summary/Keyword: 감온액정

Search Result 20, Processing Time 0.029 seconds

Natural Convection in a Three Dimensional Inclined Enclosure (경사진 3차원 밀폐 공간 내에서의 자연대류)

  • Bae Dae Seok;Kwon Oh Boong;Kim Hyun Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.168-176
    • /
    • 2005
  • In an inclined enclosure with the upper part cooled and the lower part heated, quantitative data of the temperature and velocity are obtained simultaneously using thermo-sensitive liquid crystals. Experimental results are Presented for Pr=909. aspect ratios of 1/14. 2/14 and 3/14, angle of inclination, 0$\leq$$\theta$$\leq$45 to the horizontal line. The numerical results are obtained in the same conditions as experiments by the finite volume method and its results are compared with experimental results. It is found that the number of cell is decreased with increasing the angle of inclination. and a unicell is formed at nearby 6=30$^{circ}$ which is not affected by the aspect ratio.

Experimental Analysis on the Heat Transfer Characteristics of Magnetic Fluids in a Cubic Cavity (자성유체의 밀폐공간내의 열전달 특성에 관한 실험적 연구)

  • Park, Joung-Woo;Seo, Lee-Soo;Chen, Chel-Ho;Park, Gil-Moon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic-body force exists in addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids (W-40) in a cubic cavity was examined by experimental method. One side wall was kept at a constant temperature (25 $^{\circ}C$), and the opposite side wall was also held at a constant but lower temperature (20 $^{\circ}C$). The magnetic fields of various magnitude were applied up and down by permanent magnets. We measured temperatures at 5 points which are the most suitable places in cavity by the analysis record. The thermo-sensitive liquid crystal film (R20C5A) was utilized in order to visualize wall-temperature distributions. Several kinds of experiments were carried out in order to clarify the influence of direction and intensity of magnetic fields on the natural convection. It was found that the natural convection of a magnetic fluids could be controlled by the direction and intensity of the magnetic fields.

Mixed Convection between Inclined Parallel Plates with different Temperatures (온도차를 갖는 경사진 평행평판 내의 혼합대류 열전달)

  • Piao, R.L.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2005
  • Experiments are performed to study the mixed convection flow and heat transfer in an inclined parallel plates with the upper part cooled and the lower part heated uniformly. The Reynolds number ranges from $4.0{\times}10^{-3}\;to\;6.2{\times}10^{-2}$, the angle of inclination, ${\theta}$, from 0 to 45 degree from the horizontal line, and Pr of the high viscosity fluid is 909. In this paper, the PIV(Particle image velocimetry) with TLC(Thermo-sensitive liquid crystal) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature field at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. This paper describes the methods, and presents the quantitative visualization of mixed convection. From this study, it is found that the flow pattern can be classified into three patterns which are affected by Reynolds number and the angle of inclination.

  • PDF

A Study on the Visualization and Characteristics of Mixed Convection between Inclined Parallel Plates Filled with High Viscous Fluid (경사진 평행평판 내 고 점성유체의 혼합대류 열전달 특성 및 가시화에 관한 연구)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.698-706
    • /
    • 2006
  • Experiment and numerical calculation have been peformed to investigate mixed convection heat transfer between inclined parallel plates. Particle image velocimetry (PIV) with thermo-sensitive liquid crystal (TLC) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature fields at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. The governing equations are discretized using the finite volume method. The results are presented for the Reynolds number ranges from 0.004 to 0.062, the angle of inclination, ${\Theta}$, from 0 to 45 degree and Prandtl number of the high viscosity fluid is 909. The results show velocity, temperature and mean Nusselt numbers distributions. It is found that the periodic flow of mixed convection between inclined parallel plates is shown at $0^{\circ}{\leq}{\Theta}<30^{\circ}$, Re<0.062, and the flow pattern can be classified into three patterns which depend on Reynolds number and the angle of inclination. The minimum Nusselt numbers occur at Re=0.05 regardless of the angle of inclination.

A Numerical Analysis on the Heat Transfer Characterristics of Magnetic Fluid in a Rectangular Enclosure (자성유체의 밀폐공간내 열전달특성에 관한 수치적 연구)

  • Ryu Shin-Oh;Park Myung-Ho;Park Gil-Moon;Park Joung-Woo;Seo Lee-Soo;Chen Chel-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.37-43
    • /
    • 2003
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because a magnetic body force exists in an addition to gravity and buoyancy forces. In this paper, the natural convection of a magnetic fluids (W-40) in a rectangular enclosure is investigated by numerical and experimental methods. One side wall is kept at a constant temperature ($25^{\circ}C$), and the opposite side wall is also kept at a constant temperature ($20^{\circ}C$), Under above conditions, the magnitude of the magnetic fields were varied and applied. GSMAC scheme is used for the numerical method, and the thermo-sensitive liquid crystal film (R20C5A) is utilized in order to visualize wall-temperature distributions as an experimental verification. This study has resulted in the following fact that the natural convection of a magnetic fluid is controlled by the direction and intensity of the magnetic fields.

Local Heat Transfer Characteristics of Array Impinging Jets with Channel flow on the Concave Surface (채널유동성분이 존재하는 오목 충돌면에서 배열충돌제트에 의한 국소 열전달 특성 고찰)

  • Lee, Won-Hee;Hwang, Sang-Dong;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1098-1103
    • /
    • 2004
  • In this study, the effect of channel flow in the concave surface on local heat transfer characteristics of array jets was investigated experimentally. A TLC method is employed to determine local heat transfer coefficients on the target plate and also flow visualization has been conducted to investigate the behavior of a row of impinging jets and array of impinging jets. Two different array patterns of impinging array jets devices are tested for Reynolds number(Re=10,000). In a row of impinging jets, secondary vortex is strongly maintained by main vortex at nozzle-to-plate distance of H/d=2. Therefore, the Nusselt number slowly decreased at the mid-way region between adjacent jets. In array jets, the local maximum Nusselt number region move further in the downstream direction due to the increase of channel flow velocity.

  • PDF

Improvements of Temperature Field Measurement Technique using Neural Network (신경망을 이용한 온도장 측정법 개선 방안)

  • Hwang Tae Gyu;Moon Ji Seob;Chang Tae Hyun;Doh Deog Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.52-55
    • /
    • 2004
  • Thermo-chromic Liquid Crystal(TLC) particles were used as temperature sensor for thermal fluid flow. $1K\times1K$ CCD color camera and Xenon Lamp(500W) were used for the visualization of a Hele-Shaw cell. The characteristic between the reflected colors from the TLC and their corresponding temperature shows strong non-linearity. A neural network known as having strong mapping capability for non-linearity is adopted to quantify the temperature field using the image of the flow. Improvements of color-to-temperature mapping was attained by using the local color luminance (Y) and hue (H) information as the inputs for the constructed neural network.

  • PDF

Improvements of Temperature Field Measurement Technique using Neural Network (신경망 적용의 온도장 측정법 개선 방안)

  • Doh Deog Hee;Kim Dong Hyuk;Bang Kwang Hyun;Moon Ji Seob;Hong Seong Dae;Chang Tae Hyun;Hwang Tae Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2005
  • Thermo-chromic Liquid Crystal(TLC) particles were used as temperature sensor for thermal fluid flow. 1K $\times$ 1K CCD color camera and Xenon Lamp(500w) were used for the visualization of a Hele-Shaw cell The characteristic between the reflected colors from the TLC and their corresponding temperature shows strong non-linearity A neural network known as having strong mapping capability for non-linearity is adopted to quantify the temperature field using the image of the flow. Improvements of color-to-temperature mapping was attained by using the local color luminance (Y) and hue (H) information as the inputs for the constructed neural network.

Development of a Set of an Experimental Equipment of Westerly Wave for High School (고등학교에 적합한 편서풍 파동 실험장치 개발)

  • Lee, Soon-Hwan;Park, Gwang-Soon;Kim, Hee-Soo
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2006
  • Due to a lack of reproducibility and visibility of the conventional equipment for westerly wave simulation, it is difficult to have indoor experiments at high school that show the stream of Hadley cell. A modified improvement of the old one improves the problem. The side wall and bottom of the new equipment is made by copper and acrylic resin, respectively, in order to clarify the difference between the water temperature inside and outside of the water tank. The equipment also has a high quality digital record for generating exact analysis of the results. And we also carried out several experiments that relate theoretical and experimental aspection of westerly wave. Temperature Detected Sheet (TDS) in flow visualization unit provides not only visual information of liquid flow, but also clear understanding of the relation between upper and lower wind flow structure. And the liquid stream simulated in indoor experiment using proposed equipment is commensurate with westerly wave in real atmosphere. The efficiency of educational properties of the proposed equipment is verified indirectly by Likert Scales survey of high school teachers.