• Title/Summary/Keyword: 감시카메라

Search Result 612, Processing Time 0.018 seconds

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.

Analysis on Subjective Image Quality Assessments for 4K-UHD Video Viewing Environments (4K-UHD 비디오 시청환경 특성분석을 위한 주관적 화질평가 분석)

  • Park, In-Kyung;Ha, Kwang-Sung;Kim, Mun-Churl;Cho, Suk-Hee;Cho, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.563-581
    • /
    • 2010
  • In this paper, we perform subjective visual quality assessments on UHD video for UHD TV services and analyze the assessment results. Demands for video services have been increased with availabilities of DTV, Internet and personal media equipments. With this trend, the demands for high definition video have also been increasing. Currently, 2K-HD ($1920{\times}1080$) video have been widely consumed over DTV, DVD, digital camcoders, security cameras and other multimedia terminals in various types, and recently digital cinema contents of 4K-UHD($3840{\times}2160$) have been popularly produced and the cameras, beam projects, display panels that support for 4K-UHD video start to come out into multimedia markets. Also it is expected that 4K-UHD service will appear soon in broadcasting and telecommunications environments. Therefore, in this paper, subjective assessments of visual quality on resolutions, color formats, frame rates and compression rates have been carried to provide basis information for standardization of signal specification of UHD video and viewing environments for future UHDTV. As the analysis on the assessments, UHD video exhibits better subjective visual quality than HD by the evaluators. Also, the 4K-UHD test sequences in YUV444 shows better subjective visual quality than the 4K-UHD test sequences in YUV422 and YUV420, but there is little perceptual difference on 4K-UHD test sequences between YUV422 and YUV420 formats. For the comparison between different frame rates, 4K-UHD test sequences of 60fps gives better subjective visual quality than those of 30fps. For bit-depth comparison, HD test sequences in 10-bit depth were little differentiated from those in 8-bit depth in subject visual quality assessment. Lastly, the larger the PSNR values of the reconstructed 4K-UHD test sequences are, the higher the subjective visual quality is. Against the viewing distances, the differences among encoded 4K-UHD test sequences were less distinguished in longer distances from the display.