• Title/Summary/Keyword: 감쇠판

Search Result 103, Processing Time 0.028 seconds

Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material (압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어)

  • 강영규;서경민;이시복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF

Active Control of Forced Vibrations in Smart Laminated Composite Plates Using Piezoceramics (압전세라믹을 이용한 지능 복합적층판의 강제진동의 능동제어)

  • 강영규;구근회;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2001
  • Active control of forced vibration of the cantilevered laminated composite plates using collocated piezoceramic sensor/actuator is analyzed numerically and verified experimentally for various fiber orientations. Impact on the stiffness and the damping properties is studied by varying stacking sequence of [$\theta$$_{4}$O$_{2}$90$_{2}$]s for the laminated composite plate. For the forced vibration control, the plate is excited by one pair of collocated PZT exciters in resonance and its vibrational response is suppressed by the other collocated PZT sensor/actuator using direct negative velocity feedback. It is shown that the active control of forced vibration is more effective for the smart laminated plate with higher modal damped stiffness(2ζ$\omega$/aup 2/) .

  • PDF

Placement of Passive Constrained Layer Damping for Vibration Control of Smart Plate (지능판의 진동제어를 위한 수동구속감쇠의 위치 설정)

  • Kang, Young-Kyu;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.310.1-310
    • /
    • 2002
  • Dynamic characteristics of smart laminated composite plates with passive constrained layer damping have been investigated to design structure with maximum possible damping capacity. The equations of motion are derived fur flexural vibrations of symmetrical, multi-layer laminated plates. The damping ratio and modal damping of the first bending and torsional modes are calculated by means of iterative complex eigensolution method. (omitted)

  • PDF

Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis (실험 모드해석을 이용한 균열 적층복합판의 손상평가)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.399-410
    • /
    • 2012
  • In this study, vibration tests are performed on cantilevered and clamped-clamped laminated composite rectangular plates using experimental modal analysis technique. The damages are simulated by applying progressive line cracks to the laminated composite plates for damage evaluations due to crack growth. The changes of frequency response functions(FRFs), MAC values, and modal parameters (frequency, mode shape and damping ratio) of the damaged composite plates, which are obtained by the modal testing of impact hammer, are investigated. Each experimental modal parameter of the progressively damaged composite plates is compared with natural frequencies and mode shapes obtained by finite element analysis. It is seen that the damage can be evaluated from the changes in the geometric properties and structural behaviors of the laminated composite plates resulting from the model updating process of the finite element model as a benchmark.

An Investigation of Power Flow Mechanism in Beam-plate Built-up Structures with an Energy-absorbing Plate (보-판 결합 구조물에서 에너지 흡수체로 작용하는 판의 특성에 따른 파워 전달 특성에 관한 연구)

  • Yoo, Ji-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.55-64
    • /
    • 2007
  • In the built-up structure consisting of a stiff beam and a flexible plate, Grice showed that the plate behaves as an energy absorber in narrow frequency bands(called plate blocking effect). This paper deals with such beam-plate coupled structures, where the plate is an energy absorber and the excited beam is an energy path. It is found that such energy dissipation can occur in the relatively broad bands, if different stiffnesses are used in the rectangular plate. It was experimentally verified by Heckl that the energies in terms of one-third octave band averages transferred to the plate(or dissipated in the plate) increase for increased plate damping. This Paper, however, shows that the energy absorption suddenly reduces at the certain narrow frequency bands where the plate damping effect upon the coupled beam is maximum. Also, in order to minimize energy transfer through the beam in terms of one-third octave band averages, it is advantageous to increase the plate damping closer to the excitation point All these results are based on the wane method.

Fabrication and driving experiment of 2.4mm size mirror for optical pick-up head (광기록 장치의 픽업헤드용 2.4mm 크기의 미러의 제작과 구동실험)

  • Park, Keun-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2266-2268
    • /
    • 2000
  • 본 논문에서는 스캐닝 미러의 일종으로, 광저장 장치의 픽업헤드용으로 미세회전을 하면서 레이저 빔을 편향시키는 용도로 사용되는 미러를 제작하고 구동실험을 하였다. 제작된 미러의 크기는 $2400{\times}2400{\times}64{\mu}m^3$이고, 빔 스프링은 $500{\times}9.6{\times}64{\mu}m^3$이다. 니켈 전해 도금으로 29${\mu}m$ 높이의 구동 전극을 제작하였고(세가지 모델: 공기통로가 없는 전극, 공기통로와 간격이 각각 200${\mu}m$인 전극, 공기통로와 간격이 각각 100${\mu}m$인 전극), 미러판과 전극을 조립하여(미러판과 전극 사이의 간격은 각각 29${\mu}m$, 26${\mu}m$, 26${\mu}m$) 구동실험을 하였다. 공진 주파수의 계산간은 576Hz, 측정값은 3개의 미러에서 모두 568Hz이었다. 전극과 미러판의 간격이 최대 접근거리 18${\mu}m$가 되도록 미세 회전을 시켰을 때, 공기통로가 없는 전극에서는 공진 주파수가 524Hz, 공기통로가 200${\mu}m$인 전극에서는 544Hz로 각각 감쇠되었고, 공기통로가 100${\mu}m$인 전극에서는 그대로 568Hz이었다.

  • PDF

Basic Characteristic Verification of High-damping Laminated Solar Panel with Viscoelastic Adhesive Tape for 6U CubeSat Applications (점탄성 테이프를 적용한 6U 큐브위성용 고댐핑 적층형 태양전지판의 기본 특성 검증)

  • Kim, Su-Hyeon;Kim, Hongrae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • PCB-based deployable solar panel is mainly used for CubeSat due to its lightweight and easy of electrical connection. However, as the size of solar panel increases, there is a limit to ensuring the structural safety of solar cells due to excessive dynamic displacement under launch vibration environment. In previous mechanical designs, for the minimization of dynamic deflection, panel stiffness is increased by applying additional stiffeners made of various materials such as aluminum or composite. However, it could have disadvantages for CubeSat design requirements due to limited mass and volumes. In this study, a high-damping 6U solar panel was proposed. It had superior damping characteristic with a multi-layered stiffener laminated with viscoelastic acrylic tapes. Basic characteristics of this solar panel were measured through free-vibration tests. Design effectiveness of the solar panel was validated through qualification-level launch vibration test. Based on test results, vibration characteristics of a typical PCB solar panel and the high-damping laminated solar panel were predicted and a comparative analysis was performed.

Mechanical Characteristics of Laminated Rubber Bearings for Seismic Isolation (면진용 적층고무베어링의 기계적 역학특성)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.79-89
    • /
    • 1997
  • The objective of this paper is to investigate the mechanical characteristics of the laminated rubber bearings (LRBs) for the seismic isolation. The evaluations of the proposed equations of the LRB horizontal stiffness are carried out and these equations are extended to the visco-elastic problems to investigate the damping amplifications of LRBs. The stability evaluation of LRBs is also performed. For investigation of the dynamic characteristics of LRBs, the horizontal stiffness equations of the LRBs considering the P-delta effects are applied to the modeling of a seismically isolated structure and the earthquake response time history analyses are carried out. From this research, the proposed simple equation of the horizontal stiffness of LRB is so useful for the design loads and easily extended to the visco-elastic problems. Through the stability evaluation of LRB, the increasing ratio of the total rubber thickness of the LRB severely decrecises the bucking load than the increasing ratio of unit rubber thickness. From the comparison of the dynamic shear deflection of LRB, the analysis results are in good agreement with those of the experiments.

  • PDF

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF

The Dynamic Characteristics and Serviceability of Long Span Multi-purpose Hall (장스팬 다목적 홀의 동적특성과 사용성)

  • Lee, Sung-Min;Choi, Chui-Kyung;An, Young-Ki;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • Because structural systems are becoming lighter and more flexible and have lower natural frequencies and dampings than before, coordinated rhythmic activities such as dancing, audience participation in arenas or concert halls, and aerobics result in undesirable levels of vibration. For rhythmic activities, it is resonant or near resonant behavior that result in significant dynamic amplification and hence human discomfort. The most rational design strategy is to provide enough of a gap between the natural frequency of a floor system and the dominant frequencies excited by planned human activities to assure reasonably that resonance will not occur. For the case study the vibration measurements were performed at the floor of a long-span multi-purpose hall during the rock concert of popular singer.